Rational surfaces associated with affine root systems and geometry of the Painlevé equations

作者: Hidetaka Sakai

DOI: 10.1007/S002200100446

关键词:

摘要: We present a geometric approach to the theory of Painleve equations based on rational surfaces. Our starting point is compact smooth surface X which has unique anti-canonical divisor D canonical type. classify all such surfaces X. To each X, there corresponds root subsystem E (1) 8 inside Picard lattice realize action corresponding affine Weyl group as Cremona family these show that translation part gives rise discrete equations, and above constitutes their symmetries by Backlund transformations. The six differential appear degenerate cases this construction. In latter context, Okamoto's space initial conditions pole symplectic form defining Hamiltonian structure.

参考文章(16)
I︠u︡. I. Manin, Michiel Hazewinkel, Cubic forms : algebra, geometry, arithmetic North-Holland. ,(1974)
Igor V. Dolgachev, David Ortland, Point sets in projective spaces and theta functions Société mathématique de France. ,(1988)
Victor G. Kac, Infinite-Dimensional Lie Algebras idla. pp. 422- ,(1990) , 10.1017/CBO9780511626234
Michio Jimbo, Tetsuji Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III Physica D: Nonlinear Phenomena. ,vol. 4, pp. 26- 46 ,(1981) , 10.1016/0167-2789(81)90003-8
B Grammaticos, Y Ohta, A Ramani, H Sakai, Degeneration through coalescence of the q-Painlevé VI equation Journal of Physics A. ,vol. 31, pp. 3545- 3558 ,(1998) , 10.1088/0305-4470/31/15/018
Tohru MATANO, Atusi MATUMIYA, Kyoichi TAKANO, On some Hamiltonian structures of Painlevé systems, II Journal of the Mathematical Society of Japan. ,vol. 51, pp. 843- 866 ,(1999) , 10.2969/JMSJ/05140843
Masatoshi Noumi, Yasuhiko Yamada, Affine Weyl Groups, Discrete Dynamical Systems and Painlevé Equations Communications in Mathematical Physics. ,vol. 199, pp. 281- 295 ,(1998) , 10.1007/S002200050502
B. Grammaticos, A. Ramani, V. Papageorgiou, Do integrable mappings have the Painlevé property Physical Review Letters. ,vol. 67, pp. 1825- 1828 ,(1991) , 10.1103/PHYSREVLETT.67.1825
A. Ramani, B. Grammaticos, J. Hietarinta, Discrete versions of the Painlevé equations. Physical Review Letters. ,vol. 67, pp. 1829- 1832 ,(1991) , 10.1103/PHYSREVLETT.67.1829