Interactive Decision Tree Construction for Interval and Taxonomical Data

作者: François Poulet , Thanh-Nghi Do

DOI: 10.1007/978-3-540-71080-6_9

关键词:

摘要: Visual data-mining strategy lies in tightly coupling the visualizations and analytical processes into one tool that takes advantage of assets from multiple sources. This paper presents two graphical interactive decision tree construction algorithms able to deal either with (usual) continuous data or interval taxonomical data. They are extensions existing algorithms: CIAD [17] PBC [3]. Both can be used an cooperative mode (with automatic algorithm find best split current node). We have modified corresponding help mechanisms allow them interval-valued attributes. Some results obtained on sets presented methods we create these sets.

参考文章(20)
Mihael Ankerst, Hans-Peter Kriegel, Martin Ester, Christian Elsen, Perception-Based Classification. Informatica (slovenia). ,vol. 23, ,(1999)
Analysis of Symbolic Data Springer Berlin Heidelberg. ,(2000) , 10.1007/978-3-642-57155-8
Steven L. Salzberg, Alberto Segre, Programs for Machine Learning ,(1994)
Georges G. Grinstein, Andreas Wierse, Usama Fayyad, Information Visualization in Data Mining and Knowledge Discovery ,(2001)
Richard A Olshen, Charles J Stone, Leo Breiman, Jerome H Friedman, Classification and regression trees ,(1983)
Jianchao Han, Nick Cercone, Interactive Construction of Decision Trees pacific asia conference on knowledge discovery and data mining. pp. 575- 580 ,(2001) , 10.1007/3-540-45357-1_61
FRANÇOIS POULET, FULL-VIEW: A VISUAL DATA-MINING ENVIRONMENT International Journal of Image and Graphics. ,vol. 02, pp. 127- 143 ,(2002) , 10.1142/S0219467802000524
John M. Chambers, Graphical Methods for Data Analysis ,(1983)
Charu C. Aggarwal, Towards effective and interpretable data mining by visual interaction ACM SIGKDD Explorations Newsletter. ,vol. 3, pp. 11- 22 ,(2002) , 10.1145/507515.507518