作者: Wolodymyr R. Madych
DOI: 10.1007/978-3-030-12277-5_16
关键词:
摘要: In an article published in 1976, I. J. Schoenberg conjectured that if the function f is Bernstein class Bπ and Sk({f(n)}, x) piecewise polynomial cardinal spline of order 2k interpolates (n, f(n)), n = 0, ±1, ±2, … , then for some constant c $$\displaystyle\lim _{k \to \infty } S_k(\{f(n)\}, f(x) - c \sin \pi x$$ uniformly on compact subsets real axis \({\mathbb R}\).