Mortality problem and affine automata

作者: I. K. Rystsov

DOI: 10.1007/S10559-008-0017-6

关键词:

摘要: The mortality problem for 2×2 matrices is treated from the automata theory viewpoint. This shown to be closely related reachability linear and affine of low dimensions. decidability proved some subclasses one-dimensional automata.

参考文章(13)
Michael S. Paterson, Unsolvability in 3 × 3 Matrices Studies in Applied Mathematics. ,vol. 49, pp. 105- 107 ,(1970) , 10.1002/SAPM1970491105
Zvi Kohavi, Niraj K. Jha, Linear sequential machines Switching and Finite Automata Theory. pp. 523- 569 ,(2009) , 10.1017/CBO9780511816239.016
Alexander Schrijver, Theory of Linear and Integer Programming ,(1986)
I. K. Rystsov, Representations of Regular Ideals in Finite Automata Cybernetics and Systems Analysis. ,vol. 39, pp. 668- 675 ,(2003) , 10.1023/B:CASA.0000012087.71746.0E
Vincent D. Blondel, John N. Tsitsiklis, When is a pair of matrices mortal Information Processing Letters. ,vol. 63, pp. 283- 286 ,(1997) , 10.1016/S0020-0190(97)00123-3
O. Bournez, M. Branicky, The Mortality Problem for Matrices of Low Dimensions Theory of Computing Systems \/ Mathematical Systems Theory. ,vol. 35, pp. 433- 448 ,(2002) , 10.1007/S00224-002-1010-5
B. P., Jurg Nievergelt, J. Craig Farrar, Edward M. Reingold, Computer approaches to mathematical problems Mathematics of Computation. ,vol. 29, pp. 656- ,(1975) , 10.2307/2005593
Kenneth Steiglitz, Christos H. Papadimitriou, Combinatorial Optimization: Algorithms and Complexity ,(1981)
I. K. Rystsov, Minimal zero words for second-order matrices Cybernetics and Systems Analysis. ,vol. 43, pp. 478- 483 ,(2007) , 10.1007/S10559-007-0074-2
Vesa Halava, Tero Harju, Mortality in Matrix Semigroups American Mathematical Monthly. ,vol. 108, pp. 649- 653 ,(2001) , 10.1080/00029890.2001.11919796