STATUS OF PYROPROCESSING TECHNOLOGY DEVELOPMENT IN KOREA

作者: Kee-Chan Song , Han-Soo Lee , Jin-Mok Hur , Jeong-Guk Kim , Do-Hee Ahn

DOI: 10.5516/NET.2010.42.2.131

关键词:

摘要: The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology for recycling useful resources from spent fuel since 1997. process includes pretreatment, electroreduction, electrorefining, electrowinning, and a waste salt treatment system. This paper briefly addresses unit processes related innovative technologies. As the electroreduction step, stainless steel mesh basket was applied adaption of granules uranium oxide. designed ready handling transfer feed material. A graphite cathode used continuous collection dendrite in electrorefining enhances throughput electrorefiner. particular type stirrer to inhibit spill-over at liquid Cd crucible. residual actinide recovery system also tested recover TRU tracer. In order reduce volume, crystallization method is employed Cs Sr removal. Experiments on were successfully, based results, engineering-scale equipment PRIDE (PyRoprocess Integrated inactive DEmonstration facility).

参考文章(17)
Hee-Chul Yang, Eung-Ho Kim, Geun-Il Park, Yung-Zun Cho, A New Approach to Minimize Pyroprocessing Waste Salts Through a Series of Fission Product Removal Process Nuclear Technology. ,vol. 162, pp. 208- 218 ,(2008) , 10.13182/NT08-A3949
J. H. Lee, Y. H. Kang, S. C. Hwang, J. B. Shim, E. H. Kim, S. W. Park, APPLICATION OF GRAPHITE AS A CATHODE MATERIAL FOR ELECTROREFINING OF URANIUM Nuclear Technology. ,vol. 162, pp. 135- 143 ,(2008) , 10.13182/NT08-A3940
J. H. Lee, Y. H. Kang, S. C. Hwang, H. S. Lee, E. H. Kim, S. W. Park, Assessment of a High-Throughput Electrorefining Concept for a Spent Metallic Nuclear Fuel - I: Computational Fluid Dynamics Analysis Nuclear Technology. ,vol. 162, pp. 107- 116 ,(2008) , 10.13182/NT08-A3936
Eric J. Karell, Karthick V. Gourishankar, James L. Smith, Lorac S. Chow, Laszlo Redey, Separation of Actinides from LWR Spent Fuel Using Molten-Salt-Based Electrochemical Processes Nuclear Technology. ,vol. 136, pp. 342- 353 ,(2001) , 10.13182/NT136-342
Shelly X. Li, S. D. Herrmann, K. M. Goff, M. F. Simpson, R. W. Benedict, Actinide Recovery Experiments with Bench-Scale Liquid Cadmium Cathode in Real Fission Product-Laden Molten Salt Nuclear Technology. ,vol. 165, pp. 190- 199 ,(2009) , 10.13182/NT09-A4085
Yoshiharu Sakamura, Masaki Kurata, Tadashi Inoue, Electrochemical Reduction of UO2 in Molten CaCl2 or LiCl Journal of The Electrochemical Society. ,vol. 153, ,(2006) , 10.1149/1.2160430
J. H. Lee, K. H. Oh, Y. H. Kang, S. C. Hwang, H. S. Lee, J. B. Shim, E. H. Kim, S. W. Park, ASSESSMENT OF A HIGH-THROUGHPUT ELECTROREFINING CONCEPT FOR A SPENT METALLIC NUCLEAR FUEL-II : ELECTROHYDRODYNAMIC ANALYSIS AND VALIDATION Nuclear Technology. ,vol. 165, pp. 370- 379 ,(2009) , 10.13182/NT09-A4108
Yung-Zun Cho, Hee-Chul Yang, Gil-Ho Park, Han-Soo Lee, In-Tae Kim, Treatment of a waste salt delivered from an electrorefining process by an oxidative precipitation of the rare earth elements Journal of Nuclear Materials. ,vol. 384, pp. 256- 261 ,(2009) , 10.1016/J.JNUCMAT.2008.11.020
Jin-Mok Hur, In-Kyu Choi, Soo-Haeng Cho, Sang-Mun Jeong, Chung-Seok Seo, Preparation and melting of uranium from U3O8 Journal of Alloys and Compounds. ,vol. 452, pp. 23- 26 ,(2008) , 10.1016/J.JALLCOM.2006.11.210