A new message authentication code based on the non-associativity of quasigroups

作者: Kristen Ann Meyer

DOI: 10.31274/RTD-180813-58

关键词:

摘要: A quasigroup is a set of elements with one binary operation whose multiplication table forms Latin square. Because quasigroups are not required to be associative, multiplying string together in different orders can produce results. message authentication code, or MAC, cryptographical tool used verify the authenticity message. In this dissertation, we create new code called QMAC security based on non-associativity. order obtain against forgeries, highly non-associative large must used. Methods for efficiently creating and representing such also discussed.

参考文章(12)
J. D. H. Smith, H. O. Pflugfelder, Orin Chein, Quasigroups and loops : theory and applications Heldermann. ,(1990)
Alexander Klimov, Adi Shamir, A New Class of Invertible Mappings cryptographic hardware and embedded systems. pp. 470- 483 ,(2002) , 10.1007/3-540-36400-5_34
R. M. Wilson, J. H. van Lint, A course in combinatorics ,(1992)
Alfred J Menezes, Paul C van Oorschot, Scott A Vanstone, Handbook of Applied Cryptography ,(1996)
R. P. Burn, J. Denes, A. D. Keedwell, Latin Squares and Their Applications The Mathematical Gazette. ,vol. 59, pp. 116- ,(1975) , 10.2307/3616653
S. Even, O. Goldreich, DES-like functions can generate the alternating group IEEE Transactions on Information Theory. ,vol. 29, pp. 863- 865 ,(1983) , 10.1109/TIT.1983.1056752
L. J. Paige, A note on finite abelian groups Bulletin of the American Mathematical Society. ,vol. 53, pp. 590- 593 ,(1947) , 10.1090/S0002-9904-1947-08842-X
J. Dénes, A.D. Keedwell, A new authentication scheme based on latin squares Discrete Mathematics. ,vol. 106, pp. 157- 161 ,(1992) , 10.1016/0012-365X(92)90543-O
A. Sade, Groupoï des automorphes par le groupe cyclique Canadian Journal of Mathematics. ,vol. 9, pp. 321- 335 ,(1957) , 10.4153/CJM-1957-039-3