Compressive MRI quantification using convex spatiotemporal priors and deep auto-encoders

作者: Mohammad Golbabaee , Marion I. Menzel , Bjoern H. Menze , Mike E. Davies , Pedro A. Gómez

DOI:

关键词:

摘要: We propose a dictionary-matching-free pipeline for multi-parametric quantitative MRI image computing. Our approach has two stages based on compressed sensing reconstruction and deep learned inference. The phase is convex incorporates efficient spatiotemporal regularisations within an accelerated iterative shrinkage algorithm. This minimises the under-sampling (aliasing) artefacts from aggressively short scan times. inference purely trained physical simulations (Bloch equations) that are flexible producing rich training samples. compact auto-encoder network with residual blocks in order to embed Bloch manifold projections through multiscale piecewise affine approximations, replace nonscalable dictionary-matching baseline. Tested number of datasets we demonstrate effectiveness proposed scheme recovering accurate consistent information novel subsampled 2D/3D acquisition protocols.

参考文章(57)
Yun Jiang, Dan Ma, Nicole Seiberlich, Vikas Gulani, Mark A. Griswold, MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout Magnetic Resonance in Medicine. ,vol. 74, pp. 1621- 1631 ,(2015) , 10.1002/MRM.25559
Karen Simonyan, Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition computer vision and pattern recognition. ,(2014)
Stephen F. Cauley, Kawin Setsompop, Dan Ma, Yun Jiang, Huihui Ye, Elfar Adalsteinsson, Mark A. Griswold, Lawrence L. Wald, Fast group matching for MR fingerprinting reconstruction. Magnetic Resonance in Medicine. ,vol. 74, pp. 523- 528 ,(2015) , 10.1002/MRM.25439
Guido Buonincontri, Stephen J. Sawiak, MR fingerprinting with simultaneous B1 estimation Magnetic Resonance in Medicine. ,vol. 76, pp. 1127- 1135 ,(2016) , 10.1002/MRM.26009
Stanford University. Microwave Laboratory, Matrix Treatment of Nuclear Induction Physical Review. ,vol. 98, pp. 1099- 1105 ,(1955) , 10.1103/PHYSREV.98.1099
R.A. Lerski, J.D. de Certaines, II. Performance assessment and quality control in MRI by Eurospin test objects and protocols Magnetic Resonance Imaging. ,vol. 11, pp. 817- 833 ,(1993) , 10.1016/0730-725X(93)90199-N
Mike Davies, Gilles Puy, Pierre Vandergheynst, Yves Wiaux, A Compressed Sensing Framework for Magnetic Resonance Fingerprinting Siam Journal on Imaging Sciences. ,vol. 7, pp. 2623- 2656 ,(2014) , 10.1137/130947246
Debra F. McGivney, Eric Pierre, Dan Ma, Yun Jiang, Haris Saybasili, Vikas Gulani, Mark A. Griswold, SVD Compression for Magnetic Resonance Fingerprinting in the Time Domain IEEE Transactions on Medical Imaging. ,vol. 33, pp. 2311- 2322 ,(2014) , 10.1109/TMI.2014.2337321
Mohammad Golbabaee, Pierre Vandergheynst, Joint trace/TV norm minimization: A new efficient approach for spectral compressive imaging international conference on image processing. pp. 933- 936 ,(2012) , 10.1109/ICIP.2012.6467014