Automated analysis of biological oscillator models using mode decomposition

作者: Tomasz Konopka

DOI: 10.1093/BIOINFORMATICS/BTR069

关键词:

摘要: Motivation: Oscillating signals produced by biological systems have shapes, described their Fourier spectra, that can potentially reveal the mechanisms generate them. Extracting this information from measured is interesting for validation of theoretical models, discovery and classification interaction types, optimal experiment design. Results: An automated workflow analysis oscillating signals. A software package developed to match signal shapes hundreds a priori viable model structures defined class first-order differential equations. The computes parameter values each exploiting mode decomposition formulating matching problem in terms simultaneous polynomial On basis computed values, returns list models consistent with data. In tests synthetic datasets, it not only shortlists those used data but also shows excellent fits sometimes be achieved alternative listing all equations indicative how further invalidation might additional information. When applied microarray on mice, procedure finds several candidate describe interactions related circadian rhythm. This experimental oscillators indeed rich about gene regulation mechanisms. Availability: available at http://babylone.ulb.ac.be/autoosc/. Contact: tkonopka@ulb.ac.be Supplementary information:Supplementary are Bioinformatics online.

参考文章(29)
Brian C. Goodwin, Oscillatory behavior in enzymatic control processes Advances in Enzyme Regulation. ,vol. 3, pp. 425- 437 ,(1965) , 10.1016/0065-2571(65)90067-1
Michael E. Hughes, Luciano DiTacchio, Kevin R. Hayes, Christopher Vollmers, S. Pulivarthy, Julie E. Baggs, Satchidananda Panda, John B. Hogenesch, Harmonics of Circadian Gene Transcription in Mammals PLOS Genetics. ,vol. 5, ,(2009) , 10.1371/JOURNAL.PGEN.1000442
Sašo Džeroski, Ljupčo Todorovski, Equation discovery for systems biology: finding the structure and dynamics of biological networks from time course data. Current Opinion in Biotechnology. ,vol. 19, pp. 360- 368 ,(2008) , 10.1016/J.COPBIO.2008.07.002
E.F. Camacho, D.R. Ramirez, D. Limon, D. Muñoz de la Peña, T. Alamo, Model predictive control techniques for hybrid systems Annual Reviews in Control. ,vol. 34, pp. 1- 13 ,(2009) , 10.1016/J.ARCONTROL.2010.02.002
Jianfeng Feng, Dongyun Yi, Ritesh Krishna, Shuixia Guo, Vicky Buchanan-Wollaston, Listen to Genes: Dealing with Microarray Data in the Frequency Domain PLoS ONE. ,vol. 4, pp. e5098- ,(2009) , 10.1371/JOURNAL.PONE.0005098
Béla Novák, John J. Tyson, Design principles of biochemical oscillators. Nature Reviews Molecular Cell Biology. ,vol. 9, pp. 981- 991 ,(2008) , 10.1038/NRM2530
Daniel T. Gillespie, The chemical Langevin equation Journal of Chemical Physics. ,vol. 113, pp. 297- 306 ,(2000) , 10.1063/1.481811
F. Lembregts, J. Leuridan, H. Van Brussel, Frequency domain direct parameter identification for modal analysis: State space formulation Mechanical Systems and Signal Processing. ,vol. 4, pp. 65- 75 ,(1990) , 10.1016/0888-3270(90)90041-I
Julio Vera, Eva Balsa-Canto, Peter Wellstead, Julio R. Banga, Olaf Wolkenhauer, Power-law models of signal transduction pathways Cellular Signalling. ,vol. 19, pp. 1531- 1541 ,(2007) , 10.1016/J.CELLSIG.2007.01.029
Robert m. gray, joseph w. goodman, Fourier Transforms: An Introduction for Engineers ,(2012)