Detection of changes in cracked aluminium plate determinism by recurrence analysis

作者: Joanna Iwaniec , Tadeusz Uhl , Wiesław J. Staszewski , Andrzej Klepka

DOI: 10.1007/S11071-012-0436-9

关键词:

摘要: The paper investigates changes in determinism of undamaged and cracked aluminium plates with respect to excitation frequencies. Harmonic frequencies corresponding structural resonances has been used vibrate the plates. Vibration responses have analysed using recurrence plots quantification analysis. smallest sufficient embedding dimension estimated false nearest neighbour’s algorithm. Mutual information analysis applied determine relevant time delays. results demonstrate that performed indicates dynamic behaviour various crack modes.

参考文章(53)
A. Facchini, H. Kantz, E. Tiezzi, Recurrence plot analysis of nonstationary data: the understanding of curved patterns. Physical Review E. ,vol. 72, pp. 021915- 021915 ,(2005) , 10.1103/PHYSREVE.72.021915
S. H. Ghafari, F. Golnaraghi, F. Ismail, Effect of localized faults on chaotic vibration of rolling element bearings Nonlinear Dynamics. ,vol. 53, pp. 287- 301 ,(2008) , 10.1007/S11071-007-9314-2
Grzegorz Litak, Jerzy T. Sawicki, Rafał Kasperek, Cracked rotor detection by recurrence plots Nondestructive Testing and Evaluation. ,vol. 24, pp. 347- 351 ,(2009) , 10.1080/10589750802570836
Marco Thiel, M. Carmen Romano, Jürgen Kurths, How much information is contained in a recurrence plot Physics Letters A. ,vol. 330, pp. 343- 349 ,(2004) , 10.1016/J.PHYSLETA.2004.07.050
Cesare Manetti, Alessandro Giuliani, Marc-Antoine Ceruso, Charles L. Webber, Joseph P. Zbilut, Recurrence analysis of hydration effects on nonlinear protein dynamics: multiplicative scaling and additive processes Physics Letters A. ,vol. 281, pp. 317- 323 ,(2001) , 10.1016/S0375-9601(01)00147-5
J.M. Nichols, S.T. Trickey, M. Seaver, Damage detection using multivariate recurrence quantification analysis Mechanical Systems and Signal Processing. ,vol. 20, pp. 421- 437 ,(2006) , 10.1016/J.YMSSP.2004.08.007
Liangyue Cao, Practical method for determining the minimum embedding dimension of a scalar time series Physica D: Nonlinear Phenomena. ,vol. 110, pp. 43- 50 ,(1997) , 10.1016/S0167-2789(97)00118-8
E. CRAWLEY, K. ODONNELL, Identification of nonlinear system parameters in joints using the force-state mapping technique 27th Structures, Structural Dynamics and Materials Conference. ,(1986) , 10.2514/6.1986-1013
H. Poincaré, Erratum to: Etude des surfaces asymptotiques Acta Mathematica. ,vol. 13, pp. 271- 271 ,(1890) , 10.1007/BF02392514