Global stability of the steady states of an SIS epidemic reaction–diffusion model

作者: Rui Peng , Shengqiang Liu

DOI: 10.1016/J.NA.2008.10.043

关键词:

摘要: In this work, we investigate the SIS epidemic reaction–diffusion model under heterogeneous environment studied by Allen et al. in [LJS Allen, BM Bolker, Y. Lou, AL Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction–diffusion model, Discrete Contin. Dyn. Syst. A 21 (1)(2008) 1–20]. In the two cases:(1) the diffusion rate dS of the susceptible individuals is equal to the diffusion rate dI of the infected individuals;(2) β (x)= rγ (x) for any fixed constant r∈(0,∞), where β (x) and γ (x) respectively represent the rates of disease …

参考文章(10)
Wei-Ming Ni, Moxun Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reaction Transactions of the American Mathematical Society. ,vol. 357, pp. 3953- 3969 ,(2005) , 10.1090/S0002-9947-05-04010-9
Yuan Lou, Salomé Martínez, Peter Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model Journal of Differential Equations. ,vol. 230, pp. 720- 742 ,(2006) , 10.1016/J.JDE.2006.04.005
L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic Profiles of the Steady States for an SIS Epidemic Patch Model Siam Journal on Applied Mathematics. ,vol. 67, pp. 1283- 1309 ,(2007) , 10.1137/060672522
Chris Cosner, Robert Stephen Cantrell, Spatial Ecology via Reaction-Diffusion Equations ,(2003)
Murray H. Protter, Hans F. Weinberger, Maximum principles in differential equations ,(1967)
Mingxin Wang, Non-constant positive steady states of the Sel'kov model ☆ Journal of Differential Equations. ,vol. 190, pp. 600- 620 ,(2003) , 10.1016/S0022-0396(02)00100-6
Linda J. S. Allen, , B. M. Bolker, Yuan Lou, A. L. Nevai, , , , Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model Discrete and Continuous Dynamical Systems. ,vol. 21, pp. 1- 20 ,(2008) , 10.3934/DCDS.2008.21.1
Frederic Howell Miller, Partial Differential Equations ,(1941)