Quantization of the shift of argument subalgebras in type A

作者: Vyacheslav Futorny , Alexander Molev

DOI: 10.1016/J.AIM.2015.07.038

关键词:

摘要: Abstract Given a simple Lie algebra g and an element μ ∈ ⁎ , the corresponding shift of argument subalgebra S ( ) is Poisson commutative. In case where regular, this known to admit quantization, that is, it can be lifted commutative U . We show if type A, then property extends arbitrary μ, thus proving conjecture Feigin, Frenkel Toledano Laredo. The proof relies on explicit construction generators center affine vertex at critical level.

参考文章(25)
Edward Vladimir Frenkel, Langlands Correspondence for Loop Groups ,(2007)
A. Chervov, D. Talalaev, Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence arXiv: High Energy Physics - Theory. ,(2006)
A. Chervov, G. Falqui, V. Rubtsov, Algebraic properties of Manin matrices 1 Advances in Applied Mathematics. ,vol. 43, pp. 239- 315 ,(2009) , 10.1016/J.AAM.2009.02.003
Maxim Nazarov, Grigori Olshanski, Bethe subalgebras in twisted Yangians Communications in Mathematical Physics. ,vol. 178, pp. 483- 506 ,(1996) , 10.1007/BF02099459
D. V. Talalaev, The quantum Gaudin system Functional Analysis and Its Applications. ,vol. 40, pp. 73- 77 ,(2006) , 10.1007/S10688-006-0012-5
O. S. Yakimova, The index of centralizers of elements in classical Lie algebras Functional Analysis and Its Applications. ,vol. 40, pp. 42- 51 ,(2006) , 10.1007/S10688-006-0005-4
Dmitri I. Panyushev, Oksana S. Yakimova, The argument shift method and maximal commutative subalgebras of Poisson algebras Mathematical Research Letters. ,vol. 15, pp. 239- 249 ,(2008) , 10.4310/MRL.2008.V15.N2.A3