Anomaly-Based Intrusion Detection Using Extreme Learning Machine and Aggregation of Network Traffic Statistics in Probability Space

作者: Buse Gul Atli , Yoan Miche , Aapo Kalliola , Ian Oliver , Silke Holtmanns

DOI: 10.1007/S12559-018-9564-Y

关键词:

摘要: … This model is evaluated on the ISCX-IDS 2012 dataset, which is collected using a real-time … with the other few state-of-the-art approaches evaluated on the ISCX-IDS 2012 dataset. …

参考文章(39)
Hai-Jun Rong, Paramasivan Saratchandran, Guang-Bin Huang, Nan-Ying Liang, Narasimhan Sundararajan, On-Line Sequential Extreme Learning Machine computational intelligence. pp. 232- 237 ,(2005)
Shifei Ding, Jian Zhang, Hongjie Jia, Jun Qian, An Adaptive Density Data Stream Clustering Algorithm Cognitive Computation. ,vol. 8, pp. 30- 38 ,(2016) , 10.1007/S12559-015-9342-Z
C. Perkins, IP Mobility Support for IPv4 RFC. ,vol. 3220, pp. 1- 98 ,(2002)
r;ribeiro-neto bueza-yates (b), Modern Information Retrieval ,(1999)
Christopher M. Bishop, Pattern Recognition and Machine Learning ,(2006)
Monowar H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita, Network Anomaly Detection: Methods, Systems and Tools IEEE Communications Surveys and Tutorials. ,vol. 16, pp. 303- 336 ,(2014) , 10.1109/SURV.2013.052213.00046
Latifur Khan, Mamoun Awad, Bhavani Thuraisingham, A new intrusion detection system using support vector machines and hierarchical clustering very large data bases. ,vol. 16, pp. 507- 521 ,(2007) , 10.1007/S00778-006-0002-5
Animesh Patcha, Jung-Min Park, None, An overview of anomaly detection techniques: Existing solutions and latest technological trends Computer Networks. ,vol. 51, pp. 3448- 3470 ,(2007) , 10.1016/J.COMNET.2007.02.001