Exact Solutions to the Complex Ginzburg-Landau Equation from a Linear System

作者: R. Conte , M. Musette

DOI: 10.1007/978-94-011-2082-1_27

关键词:

摘要: The one-dimensional complex Ginzburg-Landau equation is highly nonintegrable, and only a few exact solutions are known. We address the problem of finding by singularity analysis only. By introducing linear partial differential system with constant coefficients, we reduce to finite number coefficients. thus recover easily five Nozaki Bekki, each represented in our method set four constants.

参考文章(15)
Decio Levi, Pavel Winternitz, Painlevé transcendents : their asymptotics and physical applications Plenum Press. ,(1992)
Nonlinear Evolution Equations and Dynamical Systems Nonlinear Evolution Equations and Dynamical Systems. Series: Research Reports in Physics. ,(1990) , 10.1007/978-3-642-84039-5
Kazuhiro Nozaki, Naoaki Bekki, Exact Solutions of the Generalized Ginzburg-Landau Equation Journal of the Physical Society of Japan. ,vol. 53, pp. 1581- 1582 ,(1984) , 10.1143/JPSJ.53.1581
K. Nozaki, N. Bekki, Pattern selection and spatiotemporal transition to chaos in the Ginzburg-Landau equation Physical Review Letters. ,vol. 51, pp. 2171- 2174 ,(1983) , 10.1103/PHYSREVLETT.51.2171
D.V. Chudnovsky, G.V. Chudnovsky, M. Tabor, Painlevé property and multicomponent isospectral deformation equations Physics Letters A. ,vol. 97, pp. 268- 274 ,(1983) , 10.1016/0375-9601(83)90686-2
Allan P. Fordy, John Gibbons, Some remarkable nonlinear transformations Physics Letters A. ,vol. 75, pp. 325- 325 ,(1980) , 10.1016/0375-9601(80)90829-4
Robert Conte, Invariant painlevé analysis of partial differential equations Physics Letters A. ,vol. 140, pp. 383- 390 ,(1989) , 10.1016/0375-9601(89)90072-8
Alan C. Newell, J. A. Whitehead, Finite bandwidth, finite amplitude convection Journal of Fluid Mechanics. ,vol. 38, pp. 279- 303 ,(1969) , 10.1017/S0022112069000176
R Conte, M Musette, Link between solitary waves and projective Riccati equations Journal of Physics A. ,vol. 25, pp. 5609- 5623 ,(1992) , 10.1088/0305-4470/25/21/019