Optimal Detection and Classification of Diverse Short-duration Signals

作者: Paul M. Baggenstoss

DOI: 10.1109/IC2E.2014.96

关键词:

摘要: Recent theoretical advances in class-dependent feature extraction are reviewed. These advances, culminating the multi-resolution HMM (MR-HMM) statistical model proposed for detection and classification of transient signals that composed diverse components with widely varying structure resolution.

参考文章(11)
Bernhard Schölkopf, Vladimir Vapnik, Chris Burges, Extracting support data for a given task knowledge discovery and data mining. pp. 252- 257 ,(1995)
P.M. Baggenstoss, Class-specific feature sets in classification IEEE Transactions on Signal Processing. ,vol. 47, pp. 3428- 3432 ,(1999) , 10.1109/78.806092
S. Kay, Sufficiency, classification, and the class-specific feature theorem IEEE Transactions on Information Theory. ,vol. 46, pp. 1654- 1658 ,(2000) , 10.1109/18.850711
P.M. Baggenstoss, The PDF projection theorem and the class-specific method IEEE Transactions on Signal Processing. ,vol. 51, pp. 672- 685 ,(2003) , 10.1109/TSP.2002.808109
L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition Proceedings of the IEEE. ,vol. 77, pp. 267- 296 ,(1989) , 10.1109/5.18626
Z.J. Wang, P. Willett, Joint segmentation and classification of time series using class-specific features systems man and cybernetics. ,vol. 34, pp. 1056- 1067 ,(2004) , 10.1109/TSMCB.2003.819486
S.M. Kay, A.H. Nuttall, P.M. Baggenstoss, Multidimensional probability density function approximations for detection, classification, and model order selection IEEE Transactions on Signal Processing. ,vol. 49, pp. 2240- 2252 ,(2001) , 10.1109/78.950780
P.M. Baggenstoss, Class-specific classifier: avoiding the curse of dimensionality IEEE Aerospace and Electronic Systems Magazine. ,vol. 19, pp. 37- 52 ,(2004) , 10.1109/MAES.2004.1263230
Paul M. Baggenstoss, A Multi-Resolution Hidden Markov Model Using Class-Specific Features IEEE Transactions on Signal Processing. ,vol. 58, pp. 5165- 5177 ,(2010) , 10.1109/TSP.2010.2052458