Small-worldness favours network inference

作者: Nicolás Rubido , Arturo C. Martí , Rodrigo A. García , Cecilia Cabeza

DOI: 10.13140/RG.2.2.30449.84329

关键词:

摘要: A main goal in the analysis of a complex system is to infer its underlying network structure from time-series observations of its behaviour. The inference process is often done by using …

参考文章(46)
Giulio Tirabassi, Ricardo Sevilla-Escoboza, Javier M. Buldú, Cristina Masoller, Inferring the connectivity of coupled oscillators from time-series statistical similarity analysis Scientific Reports. ,vol. 5, pp. 10829- 10829 ,(2015) , 10.1038/SREP10829
John Arthur Swets, Ronald M. Pickett, Evaluation of diagnostic systems : methods from signal detection theory Academic Press. ,(1982)
Gustavo Deco, Giulio Tononi, Melanie Boly, Morten L. Kringelbach, Rethinking segregation and integration: contributions of whole-brain modelling Nature Reviews Neuroscience. ,vol. 16, pp. 430- 439 ,(2015) , 10.1038/NRN3963
Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, Kevin W. Bowyer, SMOTEBoost: Improving Prediction of the Minority Class in Boosting european conference on principles of data mining and knowledge discovery. pp. 107- 119 ,(2003) , 10.1007/978-3-540-39804-2_12
José A. Reinoso, M. C. Torrent, Cristina Masoller, Emergence of spike correlations in periodically forced excitable systems. Physical Review E. ,vol. 94, pp. 032218- 032218 ,(2016) , 10.1103/PHYSREVE.94.032218
Mark A. Kramer, Uri T. Eden, Sydney S. Cash, Eric D. Kolaczyk, Network inference with confidence from multivariate time series. Physical Review E. ,vol. 79, pp. 061916- ,(2009) , 10.1103/PHYSREVE.79.061916
B. Ibarz, J.M. Casado, M.A.F. Sanjuán, Map-based models in neuronal dynamics Physics Reports. ,vol. 501, pp. 1- 74 ,(2011) , 10.1016/J.PHYSREP.2010.12.003
Tiago Pereira, Hub synchronization in scale-free networks Physical Review E. ,vol. 82, pp. 036201- ,(2010) , 10.1103/PHYSREVE.82.036201
Ed Bullmore, Olaf Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems Nature Reviews Neuroscience. ,vol. 10, pp. 186- 198 ,(2009) , 10.1038/NRN2575