Nonlinear System Identification Using Particle Filters.

作者: Thomas B. Schön

DOI:

关键词:

摘要: Particle filters are computational methods opening up for systematic inference in nonlinear/non-Gaussian state space models. The particle constitute the most popular sequential Monte Carlo (SMC) methods. This is a relatively recent development and aim here to provide brief exposition of these SMC how they key enabling algorithms solving nonlinear system identification problems. important both frequentistic (maximum likelihood) Bayesian identification.

参考文章(15)
Christophe Andrieu, Arnaud Doucet, Roman Holenstein, Particle Markov chain Monte Carlo methods Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 72, pp. 269- 342 ,(2010) , 10.1111/J.1467-9868.2009.00736.X
Christopher K I Williams, Carl Edward Rasmussen, Gaussian Processes for Machine Learning ,(2005)
Tobias Ryden, Olivier Capp, Eric Moulines, Inference in Hidden Markov Models ,(2008)
George Casella, Christian P. Robert, Monte Carlo Statistical Methods ,(1999)
Thomas B. Schön, Adrian Wills, Brett Ninness, System identification of nonlinear state-space models Automatica. ,vol. 47, pp. 39- 49 ,(2011) , 10.1016/J.AUTOMATICA.2010.10.013
N. Kantas, A. Doucet, S.S. Singh, J.M. Maciejowski, An overview of sequential Monte Carlo methods for parameter estimation in general state-space models IFAC Proceedings Volumes. ,vol. 42, pp. 774- 785 ,(2009) , 10.3182/20090706-3-FR-2004.00129
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X