Ionospheric drag for accelerated deorbit from upper low earth orbit

作者: B.G.A. Smith , C.J. Capon , M. Brown , R.R. Boyce

DOI: 10.1016/J.ACTAASTRO.2020.07.007

关键词:

摘要: Abstract Orbit debris mitigation restrictions placed on the growing number of miniaturised spacecraft often constrain their operational altitudes to less than approximately 600km where drag accelerations are sufficient deorbit within 25 year guidelines. Operation at higher, Low Earth (LEO) necessitates active measures such as propulsion systems. However, inclusion systems is not always desirable because added cost and complexity. This work investigates feasibility ionospheric drag, component caused by an electrically charged body’s exchange momentum with ionosphere, accelerate in high LEO (600–1000 km altitude). studies how actively charging surface a satellite may enhance overall magnitude acceleration, due acting spacecraft. achieved using surrogate models coefficient, function plasma scaling parameters, generated Particle-in-Cell simulations. The coefficient model incorporated into orbit propagator times predicted over various orbital vehicular initial conditions. Results suggest that can be order larger neutral 850 altitude compared half 500 altitude. Therefore, relatively more efficient deorbiting drag. Additionally, tailorable based changes electrical potential relative quasi-neutral free-stream plasma. primary payload many require high-voltage These same could conceivably utilised generate via charging, end mission-life, little additional or system Thus, implications this include possible uncovering simple mechanism for from compliance

参考文章(29)
Krissa Watry, Jason Andrews, Kevin Brown, Nanosat Deorbit and Recovery System to Enable New Missions ,(2011)
K. F. Tapping, The 10.7 cm solar radio flux (F10.7) Space Weather-the International Journal of Research and Applications. ,vol. 11, pp. 394- 406 ,(2013) , 10.1002/SWE.20064
Andris Slavinskis, Mihkel Pajusalu, Henri Kuuste, Erik Ilbis, Tonis Eenmae, Indrek Sunter, Kaspars Laizans, Hendrik Ehrpais, Paul Liias, Erik Kulu, Jaan Viru, Jaanus Kalde, Urmas Kvell, Johan Kutt, Karlis Zalite, Karoli Kahn, Silver Latt, Jouni Envall, Petri Toivanen, Jouni Polkko, Pekka Janhunen, Roland Rosta, Taneli Kalvas, Riho Vendt, Viljo Allik, Mart Noorma, ESTCube-1 in-orbit experience and lessons learned IEEE Aerospace and Electronic Systems Magazine. ,vol. 30, pp. 12- 22 ,(2015) , 10.1109/MAES.2015.150034
Claudio Bombardelli, Denis Zanutto, Enrico Lorenzini, Deorbiting Performance of Bare Electrodynamic Tethers in Inclined Orbits Journal of Guidance Control and Dynamics. ,vol. 36, pp. 1550- 1556 ,(2013) , 10.2514/1.58428
M Pajusalu, E Ilbis, T Ilves, M Veske, J Kalde, H Lillmaa, R Rantsus, M Pelakauskas, A Leitu, K Voormansik, V Allik, S Lätt, J Envall, M Noorma, Design and pre-flight testing of the electrical power system for the ESTCube-1 nanosatellite Proceedings of the Estonian Academy of Sciences. ,vol. 63, pp. 232- ,(2014) , 10.3176/PROC.2014.2S.04
EARL D. KNECHTEL, WILLIAM C. PITTS, Experimental investigation of electric drag on satellites. AIAA Journal. ,vol. 2, pp. 1148- 1151 ,(1964) , 10.2514/3.2515
D. E. Hastings, A review of plasma interactions with spacecraft in low earth orbit Journal of Geophysical Research. ,vol. 100, pp. 14457- 14483 ,(1995) , 10.1029/94JA03358
Lourens Visagie, Vaios Lappas, Sven Erb, Drag sails for space debris mitigation Acta Astronautica. ,vol. 109, pp. 65- 75 ,(2015) , 10.1016/J.ACTAASTRO.2014.12.013
Kerry T. Nock, Kim M. Aaron, Darren McKnight, Removing Orbital Debris with Less Risk Journal of Spacecraft and Rockets. ,vol. 50, pp. 365- 379 ,(2013) , 10.2514/1.A32286