Polymer supported organic catalysts for O2 reduction in Li-O2 batteries

作者: Wei Weng , Christopher J. Barile , Peng Du , Ali Abouimrane , Rajeev S. Assary

DOI: 10.1016/J.ELECTACTA.2013.12.027

关键词:

摘要: Abstract A novel organic catalyst has been synthesized that contains an anthraquinone moiety supported on a polymer backbone. This oxygen reduction was successfully incorporated in the cathode of Li-O 2 batteries. The addition anthraquinone-based improved cycleability battery when cycled tetraethylene glycol dimethyl ether electrolyte. Computational studies coupled with wide range analytical techniques including differential electrochemical mass spectrometry, cyclic voltammetry, impedence spectroscopy, and X-ray diffraction were used to interrogate without present. study suggests catalysts may serve as light inexpensive alternatives precious metals frequently

参考文章(32)
Chaojie Song, Jiujun Zhang, Electrocatalytic Oxygen Reduction Reaction Springer, London. pp. 89- 134 ,(2008) , 10.1007/978-1-84800-936-3_2
Gary S. Calabrese, Robert M. Buchanan, Mark S. Wrighton, Electrochemical behavior of a surface-confined naphthoquinone derivative.Electrochemical and photoelectrochemical reduction of oxygen to hydrogen peroxide at derivatized electrodes Journal of the American Chemical Society. ,vol. 104, pp. 5786- 5788 ,(1982) , 10.1021/JA00385A040
G. Q. Zhang, J. P. Zheng, R. Liang, C. Zhang, B. Wang, M. Hendrickson, E. J. Plichta, Lithium–Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes Journal of The Electrochemical Society. ,vol. 157, ,(2010) , 10.1149/1.3446852
Chantal Degrand, Larry L. Miller, Voltammetric properties of electrodes modified by poly-[N-(9,10-anthraquinone-2-carbonyl)ethylenimine] and used in aqueous solution Journal of Electroanalytical Chemistry. ,vol. 117, pp. 267- 281 ,(1981) , 10.1016/S0022-0728(81)80088-5
Stefan A. Freunberger, Yuhui Chen, Zhangquan Peng, John M. Griffin, Laurence J. Hardwick, Fanny Bardé, Petr Novák, Peter G. Bruce, Reactions in the Rechargeable Lithium–O2 Battery with Alkyl Carbonate Electrolytes Journal of the American Chemical Society. ,vol. 133, pp. 8040- 8047 ,(2011) , 10.1021/JA2021747
Stefan A. Freunberger, Yuhui Chen, Nicholas E. Drewett, Laurence J. Hardwick, Fanny Bardé, Peter G. Bruce, The Lithium–Oxygen Battery with Ether‐Based Electrolytes Angewandte Chemie. ,vol. 50, pp. 8609- 8613 ,(2011) , 10.1002/ANIE.201102357
Christopher J. Barile, Andrew A. Gewirth, Investigating the Li-O2 Battery in an Ether-Based Electrolyte Using Differential Electrochemical Mass Spectrometry Journal of The Electrochemical Society. ,vol. 160, ,(2013) , 10.1149/2.033304JES
Kenichi Oyaizu, Wonsung Choi, Hiroyuki Nishide, Functionalization of poly(4-chloromethylstyrene) with anthraquinone pendants for organic anode-active materials† Polymers for Advanced Technologies. ,vol. 22, pp. 1242- 1247 ,(2011) , 10.1002/PAT.1968
G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, Lithium−Air Battery: Promise and Challenges Journal of Physical Chemistry Letters. ,vol. 1, pp. 2193- 2203 ,(2010) , 10.1021/JZ1005384
Robert Black, Brian Adams, L. F. Nazar, Non‐Aqueous and Hybrid Li‐O2 Batteries Advanced Energy Materials. ,vol. 2, pp. 801- 815 ,(2012) , 10.1002/AENM.201200001