Application of SVM and Fuzzy Set Theory for Classifying with Incomplete Survey Data

作者: Chao Lu , Xue-wei Li , Hong-bo Pan

DOI: 10.1109/ICSSSM.2007.4280164

关键词:

摘要: Classification with incomplete survey data is a new subject, and also which an important theme in mining. This paper proposes novel, powerful classification machine, support vector machine (SVM) based model of for data. Using this model, translated to fuzzy patterns without missing values firstly, then used these as the exemplar set teaching machine. Experimental results from real-world verify effectiveness applicability proposed model. Compared other techniques, method can utilize more information provided by data, reveal risk result.

参考文章(10)
Nello Cristianini, J Shawe-Taylor, An introduction to Support Vector Machines Cambridge University Press (2000). ,(2000)
Shouhong Wang, Classification with incomplete survey data Computers & Operations Research. ,vol. 32, pp. 2583- 2594 ,(2005) , 10.1016/J.COR.2004.03.018
L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility Fuzzy Sets and Systems. ,vol. 100, pp. 9- 34 ,(1999) , 10.1016/S0165-0114(99)80004-9
Corinna Cortes, Vladimir Vapnik, Support-Vector Networks Machine Learning. ,vol. 20, pp. 273- 297 ,(1995) , 10.1023/A:1022627411411
S. Daskalaki, I. Kopanas, M. Goudara, N. Avouris, Data mining for decision support on customer insolvency in telecommunications business European Journal of Operational Research. ,vol. 145, pp. 239- 255 ,(2003) , 10.1016/S0377-2217(02)00532-5
Christopher J.C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition Data Mining and Knowledge Discovery. ,vol. 2, pp. 121- 167 ,(1998) , 10.1023/A:1009715923555
Vladimir Naumovich Vapnik, Vlamimir Vapnik, Statistical learning theory John Wiley & Sons. ,(1998)
Jesús Figueroa Nazuno, Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 Computación y sistemas. ,vol. 4, pp. 189- 192 ,(2000)