Accuracy of an Artificial Intelligence Deep Learning Algorithm Implementing a Recurrent Neural Network With Long Short-term Memory for the Automated Detection of Calcified Plaques From Coronary Computed Tomography Angiography.

作者: Andreas M. Fischer , Marwen Eid , Carlo N. De Cecco , Mehmet A. Gulsun , Marly van Assen

DOI: 10.1097/RTI.0000000000000491

关键词:

摘要: Purpose The purpose of this study was to evaluate the accuracy a novel fully automated deep learning (DL) algorithm implementing recurrent neural network (RNN) with long short-term memory (LSTM) for detection coronary artery calcium (CAC) from computed tomography angiography (CCTA) data. Materials and methods Under an IRB waiver in HIPAA compliance, total 194 patients who had undergone CCTA were retrospectively included. Two observers independently evaluated image quality recorded presence CAC right (RCA), combination left main anterior descending (LM-LAD), circumflex (LCx) arteries. Noncontrast CACS scans allowed be used cases uncertainty. Heart centerline labeling automatically performed. Presence assessed by RNN-LSTM. algorithm's overall per-vessel sensitivity, specificity, diagnostic calculated. Results absent 84 present 110 patients. As regards CCTA, median subjective quality, signal-to-noise ratio, contrast-to-noise ratio 3.0, 13.0, 11.4. A 565 vessels evaluated. On basis, achieved 93.1% (confidence interval [CI], 84.3%-96.7%), 82.76% (CI, 74.6%-89.4%), 86.7% 76.8%-87.9%), respectively, RCA, 86.4%-97.7%), 95.5% 88.77%-98.75%), 94.2% (CI. 90.2%-94.6%), LM-LAD, 89.9% 80.2%-95.8%), 90.0% 83.2%-94.7%), 85.0%-94.1%), LCx. 92.1% 92.1%-95.2%), 88.9% 84.9%-92.1%), 90.3% 88.0%-90.0%), respectively. When accounting 76.2%, 87.5%, 82.2%, poor-quality data sets 93.3%, 89.2% 90.9%, when rated adequate or higher combined. Conclusion proposed RNN-LSTM demonstrated high CCTA.

参考文章(35)
Rahil Shahzad, Theo van Walsum, Michiel Schaap, Alexia Rossi, Stefan Klein, Annick C. Weustink, Pim J. de Feyter, Lucas J. van Vliet, Wiro J. Niessen, Vessel Specific Coronary Artery Calcium Scoring. An Automatic System Academic Radiology. ,vol. 20, pp. 1- 9 ,(2013) , 10.1016/J.ACRA.2012.07.018
Annika Schuhbaeck, Yuka Otaki, Stephan Achenbach, Christian Schneider, Piotr Slomka, Daniel S. Berman, Damini Dey, Coronary calcium scoring from contrast coronary CT angiography using a semiautomated standardized method Journal of Cardiovascular Computed Tomography. ,vol. 9, pp. 446- 453 ,(2015) , 10.1016/J.JCCT.2015.06.001
Robert Detrano, Alan D. Guerci, J. Jeffrey Carr, Diane E. Bild, Gregory Burke, Aaron R. Folsom, Kiang Liu, Steven Shea, Moyses Szklo, David A. Bluemke, Daniel H. O'Leary, Russell Tracy, Karol Watson, Nathan D. Wong, Richard A. Kronmal, Coronary calcium as a predictor of coronary events in four racial or ethnic groups. The New England Journal of Medicine. ,vol. 358, pp. 1336- 1345 ,(2008) , 10.1056/NEJMOA072100
Matthias Teßmann, Fernando Vega-Higuera, Bernhard Bischoff, Jörg Hausleiter, Günther Greiner, Automatic detection and quantification of coronary calcium on 3D CT angiography data Computer Science - Research and Development. ,vol. 26, pp. 117- 124 ,(2011) , 10.1007/S00450-010-0131-3
Bernd M. Ohnesorge, Lars K. Hofmann, Thomas G. Flohr, U. Joseph Schoepf, CT for imaging coronary artery disease: defining the paradigm for its application. International Journal of Cardiovascular Imaging. ,vol. 21, pp. 85- 104 ,(2005) , 10.1007/S10554-004-5346-6
Dongwoo Kang, Damini Dey, Piotr J. Slomka, Reza Arsanjani, Ryo Nakazato, Hyunsuk Ko, Daniel S. Berman, Debiao Li, C.-C. Jay Kuo, Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography Journal of medical imaging. ,vol. 2, pp. 014003- 014003 ,(2015) , 10.1117/1.JMI.2.1.014003
Wehab Ahmed, Michiel A. de Graaf, Alexander Broersen, Pieter H. Kitslaar, Elco Oost, Jouke Dijkstra, Jeroen J. Bax, Johan H. C. Reiber, Arthur J. Scholte, Automatic detection and quantification of the Agatston coronary artery calcium score on contrast computed tomography angiography. International Journal of Cardiovascular Imaging. ,vol. 31, pp. 151- 161 ,(2015) , 10.1007/S10554-014-0519-4
Ivana Išgum, Annemarieke Rutten, Mathias Prokop, Bram van Ginneken, Detection of coronary calcifications from computed tomography scans for automated risk assessment of coronary artery disease. Medical Physics. ,vol. 34, pp. 1450- 1461 ,(2007) , 10.1118/1.2710548
Ki-Woon Kang, Hyuk-Jae Chang, Hackjoon Shim, Young-Jin Kim, Byoung-Wook Choi, Woo-In Yang, Jee-Young Shim, Jongwon Ha, Namsik Chung, Feasibility of an automatic computer-assisted algorithm for the detection of significant coronary artery disease in patients presenting with acute chest pain. European Journal of Radiology. ,vol. 81, pp. 640- 646 ,(2012) , 10.1016/J.EJRAD.2012.01.017