Machine-Learning Research

作者: Thomas G. Dietterich

DOI: 10.1609/AIMAG.V18I4.1324

关键词:

摘要: … in symbolic machine learning, computational learning theory, … Second, machine-learning techniques are being applied to … In this article, I selected four topics within machine learning …

参考文章(107)
Geoffrey E. Hinton, Peter Dayan, Feudal Reinforcement Learning neural information processing systems. ,vol. 5, pp. 271- 278 ,(1992)
Ali S. Hadi, Enrique Castillo, Jose M. Gutierrez, Expert Systems and Probabilistic Network Models ,(1996)
C. Chow, C. Liu, Approximating discrete probability distributions with dependence trees IEEE Transactions on Information Theory. ,vol. 14, pp. 462- 467 ,(1968) , 10.1109/TIT.1968.1054142
Jude W. Shavlik, David W. Opitz, Generating Accurate and Diverse Members of a Neural-Network Ensemble neural information processing systems. ,vol. 8, pp. 535- 541 ,(1995)
Bambang Parmanto, Paul W. Munro, Competition Among Networks Improves Committee Performance neural information processing systems. ,vol. 9, pp. 592- 598 ,(1996)
Belén Mayo Escudero, Reinforcement Learning for Dynamic Channel Allocation in Cellular Telephone Systems neural information processing systems. ,vol. 9, pp. 974- 980 ,(1996)
David Heckerman, Dan Geiger, David M. Chickering, Learning Bayesian Networks: The Combination of Knowledge and Statistical Data Machine Learning. ,vol. 20, pp. 197- 243 ,(1995) , 10.1023/A:1022623210503
Arega W. Yohannes, Dynamic Programming ,(1957)
G. M. Raab, A. J. Miller, Subset Selection in Regression. Biometrics. ,vol. 47, pp. 1632- ,(1991) , 10.2307/2532418