An Analytical Comparison of Approaches to Personalizing PageRank

作者: Taher Haveliwala , Sepandar Kamvar , Glen Jeh

DOI:

关键词:

摘要: PageRank, the popular link-analysis algorithm for ranking web pages, assigns a query and user independent estimate of "importance" to pages. Query sensitive extensions which use basis set biased PageRank vectors, have been proposed in order personalize function tractable way. We analytically compare three recent approaches personalizing discuss tradeoffs each one.

参考文章(6)
Taher Haveliwala, Sepandar Kamvar, Gene Golub, Christopher Manning, Exploiting the Block Structure of the Web for Computing PageRank Stanford. ,(2003)
Rajeev Motwani, Terry Winograd, Lawrence Page, Sergey Brin, The PageRank Citation Ranking : Bringing Order to the Web the web conference. ,vol. 98, pp. 161- 172 ,(1999)
Glen Jeh, Jennifer Widom, Scaling personalized web search Proceedings of the twelfth international conference on World Wide Web - WWW '03. pp. 271- 279 ,(2003) , 10.1145/775152.775191
Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, Gene H. Golub, Extrapolation methods for accelerating PageRank computations Proceedings of the twelfth international conference on World Wide Web - WWW '03. pp. 261- 270 ,(2003) , 10.1145/775152.775190
Taher H. Haveliwala, Topic-sensitive PageRank the web conference. pp. 517- 526 ,(2002) , 10.1145/511446.511513
Rajeev Motwani, Prabhakar Raghavan, Randomized Algorithms ,(1995)