Optimal Hypercube Algorithms for Labeled Images (Preliminary Version)

作者: Russ Miller , Quentin F. Stout

DOI: 10.1007/3-540-51542-9_43

关键词:

摘要: Optimal hypercube algorithms are given for determining properties of labeled figures in a digitized black/white image stored one pixel per processor on fine-grained hypercube. A figure (i.e., connected component) is maximally set black pixels an image. The said to be if every the has label, with two having same label and only they figure. We show that input consisting image, systematic use divide-and-conquer into subimages n c pixels, coupled global operations such as parallel prefix semigroup reduction over figures, can used rapidly determine many figures. Using this approach, we Θ(log n) worst-case time extreme points, area, perimeter, centroid, diameter, width smallest enclosing rectangle determined. These times optimal, superior best previously published Θ(log2n).

参考文章(19)
Quentin F. Stout, Hypercubes and pyramids Pyramidal systems for computer vision. pp. 75- 89 ,(1986) , 10.1007/978-3-642-82940-6_5
T.N. Mudge, T.S. Abdel-Rahman, Vision algorithms for hypercube machines Journal of Parallel and Distributed Computing. ,vol. 4, pp. 79- 94 ,(1987) , 10.1016/0743-7315(87)90009-8
Mikhail J. Atallah, Michael T. Goodrich, Efficient parallel solutions to some geometric problems Journal of Parallel and Distributed Computing. ,vol. 3, pp. 492- 507 ,(1986) , 10.1016/0743-7315(86)90011-0
Russ Miller, Susan E. Miller, Image Processing On Hypercube Multiprocessors Scopus. ,vol. 0939, pp. 156- 166 ,(1988) , 10.1117/12.947060
R. Miller, Q.F. Stout, Efficient parallel convex hull algorithms IEEE Transactions on Computers. ,vol. 37, pp. 1605- 1618 ,(1988) , 10.1109/12.9737
Yossi Shiloach, Uzi Vishkin, An O(logn) parallel connectivity algorithm Journal of Algorithms. ,vol. 3, pp. 57- 67 ,(1982) , 10.1016/0196-6774(82)90008-6
R Cypher, J.L.C Sanz, L Snyder, Hypercube and shuffle-exchange algorithms for image component labeling Journal of Algorithms. ,vol. 10, pp. 140- 150 ,(1989) , 10.1016/0196-6774(89)90028-X
H. Freeman, R. Shapira, Determining the minimum-area encasing rectangle for an arbitrary closed curve Communications of the ACM. ,vol. 18, pp. 409- 413 ,(1975) , 10.1145/360881.360919
A. Aggarwal, B. Chazelle, L. Guibas, C. Ó'Dúnlaing, C. Yap, Parallel computational geometry Algorithmica. ,vol. 3, pp. 293- 327 ,(1988) , 10.1007/BF01762120
David Nassimi, Sartaj Sahni, Parallel permutation and sorting algorithms and a new generalized connection network Journal of the ACM. ,vol. 29, pp. 642- 667 ,(1982) , 10.1145/322326.322329