On a class of maximality principles

作者: Nam Trang , Daisuke Ikegami

DOI:

关键词:

摘要: We study various classes of maximality principles, $\rm{MP}(\kappa,\Gamma)$, introduced by J.D. Hamkins, where $\Gamma$ defines a class forcing posets and $\kappa$ is cardinal. explore the consistency strength relationship $\textsf{MP}(\kappa,\Gamma)$ with axioms when $\kappa \in\{\omega,\omega_1\}$. In particular, we give characterization bounded for forcings in terms principles MP$(\omega_1,\Gamma)$ $\Sigma_1$ formulas. A significant part paper devoted to studying principle MP$(\kappa,\Gamma)$ $\kappa\in\{\omega,\omega_1\}$ stationary set preserving forcings. show that has high strength; on other hand, if proper or semi-proper forcings, then it shown consistent relative $V=L$.

参考文章(12)
Matteo Viale, Martin's maximum revisited Archive for Mathematical Logic. ,vol. 55, pp. 295- 317 ,(2016) , 10.1007/S00153-015-0466-3
Saharon Shelah, Proper and Improper Forcing ,(1998)
Gunter Fuchs, Joel David Hamkins, Jonas Reitz, Set-theoretic geology Annals of Pure and Applied Logic. ,vol. 166, pp. 464- 501 ,(2015) , 10.1016/J.APAL.2014.11.004
Benjamin Claverie, Ralf Schindler, Woodin's axiom (*), bounded forcing axioms, and precipitous ideals on ω₁ Journal of Symbolic Logic. ,vol. 77, pp. 475- 498 ,(2012) , 10.2178/JSL/1333566633
Joel D. Hamkins, W. Hugh Woodin, The Necessary Maximality Principle for c.c.c. forcing is equiconsistent with a weakly compact cardinal Mathematical Logic Quarterly. ,vol. 51, pp. 493- 498 ,(2005) , 10.1002/MALQ.200410045
Stevo Todorcevic, Generic absoluteness and the continuum Mathematical Research Letters. ,vol. 9, pp. 465- 471 ,(2002) , 10.4310/MRL.2002.V9.N4.A6
Joan Bagaria, Bounded forcing axioms as principles of generic absoluteness Archive for Mathematical Logic. ,vol. 39, pp. 393- 401 ,(2000) , 10.1007/S001530050154
Ralf Schindler, Semi-proper forcing, remarkable cardinals, and Bounded Martin's Maximum Mathematical Logic Quarterly. ,vol. 50, pp. 527- 532 ,(2004) , 10.1002/MALQ.200410002
KONSTANTINOS TSAPROUNIS, ON RESURRECTION AXIOMS Journal of Symbolic Logic. ,vol. 80, pp. 587- 608 ,(2015) , 10.1017/JSL.2013.39
Joel David Hamkins, Thomas A. Johnstone, Resurrection axioms and uplifting cardinals Archive for Mathematical Logic. ,vol. 53, pp. 463- 485 ,(2014) , 10.1007/S00153-014-0374-Y