Harmonic measures and bowen-margulis measures

作者: F. Ledrappier

DOI: 10.1007/BF02773746

关键词:

摘要: We compare two families of measures defined on the absolute universal cover a compact negatively-curved manifold: harmonic and Bowen-Margulis measures.

参考文章(14)
Dennis Sullivan, The Dirichlet problem at infinity for a negatively curved manifold Journal of Differential Geometry. ,vol. 18, pp. 723- 732 ,(1983) , 10.4310/JDG/1214438179
Michael T. Anderson, The Dirichlet problem at infinity for manifolds of negative curvature Journal of Differential Geometry. ,vol. 18, pp. 701- 721 ,(1983) , 10.4310/JDG/1214438178
G. A. Margulis, Certain measures associated with U-flows on compact manifolds Functional Analysis and Its Applications. ,vol. 4, pp. 55- 67 ,(1970) , 10.1007/BF01075620
Rufus Bowen, Brian Marcus, Unique ergodicity for horocycle foliations Israel Journal of Mathematics. ,vol. 26, pp. 43- 67 ,(1977) , 10.1007/BF03007655
Michael T. Anderson, Richard Schoen, Positive harmonic functions on complete manifolds of negative curvature Annals of Mathematics. ,vol. 121, pp. 429- 461 ,(1985) , 10.2307/1971181
F. Ledrappier, ERGODIC PROPERTIES OF BROWNIAN MOTION ON COVERS OF COMPACT NEGATIVELY-CURVE MANIFOLDS Boletim Da Sociedade Brasileira De Matematica. ,vol. 19, pp. 115- 140 ,(1988) , 10.1007/BF02584822
A. N. Livshits, Homology properties of Y-systems Mathematical Notes. ,vol. 10, pp. 758- 763 ,(1971) , 10.1007/BF01109040