Sensitivity kernels for wave-equation migration velocity analysis

作者: Paul Sava , Biondo Biondi

DOI:

关键词:

摘要: The success of migration velocity analysis methods is strongly dependent on the characteristics linearized tomographic operator that inverted to estimate updates. To study properties wave-equation analysis, we analyze its sensitivity kernels. Sensitivity kernels describe dependence data space elements small changes model elements. We show MVA depend frequency content recorded and background model. computed assuming presence a salt body in these are drastically different from idealized ifat raysi. Consequently cannot be approximated by articial fattening geometrical rays. Furthermore, our examples illustrate potential nite-frequenc y as well frequency-dependent nature illumination for subsalt regions.

参考文章(15)
Christof Stork, REFLECTION TOMOGRAPHY IN THE POSTMIGRATED DOMAIN Geophysics. ,vol. 57, pp. 680- 692 ,(1992) , 10.1190/1.1443282
Biondo Biondi, Paul Sava, Wave‐equation migration velocity analysis Seg Technical Program Expanded Abstracts. ,(1999) , 10.1190/1.1820867
Paul Sava, Sergey Fomel, Wave-equation migration velocity analysis beyond the Born approximation Seg Technical Program Expanded Abstracts. ,(2002) , 10.1190/1.1817169
Dan Kosloff, John Sherwood, Zvi Koren, Elana Machet, Yael Falkovitz, None, Velocity and interface depth determination by tomography of depth migrated gathers Geophysics. ,vol. 61, pp. 1511- 1523 ,(1996) , 10.1190/1.1444076
John T. Etgen, Interval Velocity Estimation Using Residual Prestack Migration Seg Technical Program Expanded Abstracts. ,(1993) , 10.1190/1.1822584
P. Sava, B. Biondi, Wave-equation migration velocity analysis. I. Theory Geophysical Prospecting. ,vol. 52, pp. 593- 606 ,(2004) , 10.1111/J.1365-2478.2004.00447.X
Albert Tarantola, A strategy for nonlinear elastic inversion of seismic reflection data Geophysics. ,vol. 51, pp. 1893- 1903 ,(1986) , 10.1190/1.1442046
Marta Jo Woodward, Wave-equation tomography Geophysics. ,vol. 57, pp. 15- 26 ,(1992) , 10.1190/1.1443179
F. A. Dahlen, S.-H. Hung, Guust Nolet, Fréchet kernels for finite-frequency traveltimes—I. Theory Geophysical Journal International. ,vol. 141, pp. 157- 174 ,(2000) , 10.1046/J.1365-246X.2000.00070.X
H. Marquering, F. A. Dahlen, G. Nolet, Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana–doughnut paradox Geophysical Journal International. ,vol. 137, pp. 805- 815 ,(1999) , 10.1046/J.1365-246X.1999.00837.X