Anomalous dimensions of scalar operators in QED3

作者: Shai M. Chester , Silviu Stefan Pufu

DOI: 10.1007/JHEP08(2016)069

关键词:

摘要: The infrared dynamics of 2 + 1 dimensional quantum electrodynamics (QED3) with a large number N fermion flavors is governed by an interacting CFT that can be studied in the 1/N expansion. We use expansion to calculate scaling dimensions all lowest three scalar operators transform under SU(N ) flavor symmetry as Young diagram two columns not necessarily equal heights and have vanishing topological charge. In case singlets, we study mixing $$ \left({\overline{\psi}}_i{\psi}^i\right)\left({\overline{\psi}}_j{\psi}^j\right) $$ F μν , which are dimension parity-even singlets. Our results suggest these irrelevant for > 1.

参考文章(23)
Vladimir A. Smirnov, Analytic Tools for Feynman Integrals ,(2013)
Grigory Tarnopolsky, Simone Giombi, Igor R. Klebanov, Conformal QED$_d$, $F$-Theorem and the $\epsilon$ Expansion arXiv: High Energy Physics - Theory. ,(2015)
Zohar Komargodski, Itamar Shamir, Lorenzo Di Pietro, Emmanuel Stamou, Quantum Electrodynamics in d=3 from the ε Expansion. Physical Review Letters. ,vol. 116, pp. 131601- 131601 ,(2015) , 10.1103/PHYSREVLETT.116.131601
Daniel Nash, Higher-order corrections in (2+1)-dimensional QED. Physical Review Letters. ,vol. 62, pp. 3024- 3026 ,(1989) , 10.1103/PHYSREVLETT.62.3024
Walter Rantner, Xiao-Gang Wen, Spin correlations in the algebraic spin liquid: Implications for high-T c superconductors Physical Review B. ,vol. 66, pp. 144501- ,(2002) , 10.1103/PHYSREVB.66.144501
Thomas Appelquist, Daniel Nash, L. C. R. Wijewardhana, Critical Behavior in (2+1)-Dimensional QED Physical Review Letters. ,vol. 60, pp. 2575- 2578 ,(1988) , 10.1103/PHYSREVLETT.60.2575
Vadim Borokhov, Anton Kapustin, Xinkai Wu, Topological Disorder Operators in Three-Dimensional Conformal Field Theory Journal of High Energy Physics. ,vol. 2002, pp. 049- 049 ,(2002) , 10.1088/1126-6708/2002/11/049