作者: Evgeny Demenkov
DOI: 10.1007/978-3-642-30642-6_8
关键词:
摘要: In 1973, Lamagna and Savage proved the following result. If f j : {0,1}n → {0,1} for 1 ≤ m depends on at least two variables if i ≠ j, \(f_i \neq \bar{f_j}\), then any binary basis Ω, $$C_{\Omega}(f_1, \ldots f_m) \geq \min\limits_j C_{\Omega}(f_j) + -1,$$ where C Ω(f) is minimal size of a circuit computing in Ω.