Incremental PCA: an alternative approach for novelty detection

作者: Ulrich Nehmzow , Hugo Vieira Neto

DOI:

关键词:

摘要: Exploration and inspection of dynamic environments using mobile robots are applications that benefit immensely from novelty detection algorithms. In this paper we propose the use a new approach for on-line based on incremental Principal Component Analysis compare its performance functionality with previously studied technique GWR neural network. We have conducted series experiments visual input robot interacting controlled laboratory environment show advantages disadvantages each method.

参考文章(7)
Ulrich Nehmzow, Hugo Vieira Neto, Novelty-based visual inspection using mobile robots Curitiba. ,(2004)
Ulrich Nehmzow, Stephen Marsland, Jonathan Shapiro, Environment-specific novelty detection simulation of adaptive behavior. pp. 36- 45 ,(2002)
Krystian Mikolajczyk, Cordelia Schmid, An Affine Invariant Interest Point Detector european conference on computer vision. ,vol. 2350, pp. 128- 142 ,(2002) , 10.1007/3-540-47969-4_9
M. Artac, M. Jogan, A. Leonardis, Incremental PCA for on-line visual learning and recognition international conference on pattern recognition. ,vol. 3, pp. 30781- ,(2002) , 10.1109/ICPR.2002.1048133
L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention for rapid scene analysis IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 20, pp. 1254- 1259 ,(1998) , 10.1109/34.730558
David G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints International Journal of Computer Vision. ,vol. 60, pp. 91- 110 ,(2004) , 10.1023/B:VISI.0000029664.99615.94
Skocaj, Leonardis, Weighted and robust incremental method for subspace learning international conference on computer vision. pp. 1494- 1501 ,(2003) , 10.1109/ICCV.2003.1238667