A MODIFIED HYPERMAP ARCHITECTURE FOR CLASSIFICATION OF BIOLOGICAL SIGNALS

作者: B Brückner , M. Franz , A. Richter

DOI: 10.1016/B978-0-444-89488-5.50072-5

关键词:

摘要: In this paper we present a modification of the hypermap architecture introduced by Kohonen on ICANN 91 and verification classification biological signals. We suggest structure an arbitrary number levels in input vector with each level consisting transformed data (Fig.1), which form “context” trained data. The novelty described solution is based further step toward generalized, structured Feature Map possibility to better classify noisy signals like EEG speech.

参考文章(8)
Teuvo Kohonen, THE HYPERMAP ARCHITECTURE international conference on artificial neural networks. pp. 1357- 1360 ,(1991) , 10.1016/B978-0-444-89178-5.50088-9
Teuvo Kohonen, Self-organized formation of topologically correct feature maps Biological Cybernetics. ,vol. 43, pp. 509- 521 ,(1988) , 10.1007/BF00337288
Jari Kangas, TIME-DEPENDENT SELF-ORGANIZING MAPS FOR SPEECH RECOGNITION international conference on artificial neural networks. pp. 1591- 1594 ,(1991) , 10.1016/B978-0-444-89178-5.50143-3
J.A. Kangas, T.K. Kohonen, J.T. Laaksonen, Variants of self-organizing maps IEEE Transactions on Neural Networks. ,vol. 1, pp. 93- 99 ,(1990) , 10.1109/72.80208
T. Kohonen, The self-organizing map Proceedings of the IEEE. ,vol. 78, pp. 1464- 1480 ,(1990) , 10.1109/5.58325
H. Ritter, T. Kohonen, Self-organizing semantic maps Biological Cybernetics. ,vol. 61, pp. 241- 254 ,(1989) , 10.1007/BF00203171
Helge J. Ritter, Thomas M. Martinetz, Klaus J. Schulten, Topology-conserving maps for learning visuo-motor-coordination Neural Networks. ,vol. 2, pp. 159- 168 ,(1989) , 10.1016/0893-6080(89)90001-4
T. Kohonen, Self-organized formation of topographically correct feature maps Biological Cybernetics. ,vol. 43, pp. 59- 69 ,(1982)