Global exponential stability results for neutral-type impulsive neural networks

作者: R. Rakkiyappan , P. Balasubramaniam , Jinde Cao

DOI: 10.1016/J.NONRWA.2008.10.050

关键词:

摘要: Abstract In this paper, by utilizing the Lyapunov–Krasovkii functional and combining with linear matrix inequality (LMI) approach, we analyze global exponential stability of neutral-type impulsive neural networks. addition, an example is provided to illustrate applicability result using LMI control toolbox in MATLAB.

参考文章(33)
Huanhuan Mai, Xiaofeng Liao, Chuandong Li, A semi-free weighting matrices approach for neutral-type delayed neural networks Journal of Computational and Applied Mathematics. ,vol. 225, pp. 44- 55 ,(2009) , 10.1016/J.CAM.2008.06.016
Zhi-Hong Guan, James Lam, Guanrong Chen, On impulsive autoassociative neural networks Neural Networks. ,vol. 13, pp. 63- 69 ,(2000) , 10.1016/S0893-6080(99)00095-7
Jinde Cao, On exponential stability and periodic solutions of CNNs with delays Physics Letters A. ,vol. 267, pp. 312- 318 ,(2000) , 10.1016/S0375-9601(00)00136-5
M.U. Akhmetov, A. Zafer, Stability of the Zero Solution of Impulsive Differential Equations by the Lyapunov Second Method Journal of Mathematical Analysis and Applications. ,vol. 248, pp. 69- 82 ,(2000) , 10.1006/JMAA.2000.6864
Jinde Cao, Dongming Zhou, Stability analysis of delayed cellular neural networks Neural Networks. ,vol. 11, pp. 1601- 1605 ,(1998) , 10.1016/S0893-6080(98)00080-X
Zai-Tang Huang, Qi-Gui Yang, Xiao-shu Luo, Exponential stability of impulsive neural networks with time-varying delays Chaos Solitons & Fractals. ,vol. 35, pp. 770- 780 ,(2008) , 10.1016/J.CHAOS.2006.05.089
P. Balasubramaniam, J. Abdul Samath, N. Kumaresan, Optimal control for nonlinear singular systems with quadratic performance using neural networks Applied Mathematics and Computation. ,vol. 187, pp. 1535- 1543 ,(2007) , 10.1016/J.AMC.2006.09.072