Mitochondrial DNA Damage: Role of Ogg1 and Aconitase

作者: Gang Liu , David W.

DOI: 10.5772/24362

关键词:

摘要: Mitochondria have a vital role in respiration-coupled energy production, amino acid and fatty metabolism, Fe2+/Ca2+ homeostasis the integration of apoptotic signals that regulate cellular life death (Babcock et al., 1997; Loeb 2005; Taylor & Turnbull, Kroemer 2007). Given importance these functions regulated by mitochondria with implications for aging, degenerative diseases carcinogenesis, it is not surprising this organelle has been subject intensive investigation decades continues to challenge investigators. produce nearly 90% all made body oxidative phosphorylation occurs via electron transport chain (ETC). are major site reactive oxygen species (ROS) production. It estimated 1–5% consumed mitochondrial ETC converted ROS (Kroemer Mammalian covalently closed round DNA (mtDNA) replicated expressed within close proximity potentially damaging (Clayton 1982; Clayton 1984; mtDNA contains 37 genes encode 13 proteins (all which involved ETC), 22 tRNAs, 2 rRNAs (Anderson 1981). The remaining proteins, metabolic enzymes, RNA polymerases ribosomal encoded nuclear genome. Oxidative stress-induced damage implicated wide range pathologic processes including aging various organs tissues (Bohr 2002; Van Houten 2006; 2007; Gredilla 2010). In review, we summarize evidence augments mitochondriaregulated (intrinsic) apoptosis; an event underlies pathophysiologic mechanisms diverse diseases. We focus our attention on one form stress, exposure asbestos fibers, well known cause pulmonary fibrosis (asbestosis) malignancies (e.g. mesothelioma lung cancer). Specifically, examine repair enzyme (8-oxoguanine glycosylase; Ogg1) recently described novel mechanism whereby Ogg1 acts as aconitase chaperone protein prevent oxidant-induced alveolar epithelial cell (AEC) dysfunction intrinsic apoptosis. discuss studies showing

参考文章(131)
Samy L. Habib, Daniel J. Riley, Lenin Mahimainathan, Basant Bhandari, Goutam Ghosh Choudhury, Hanna E. Abboud, Tuberin regulates the DNA repair enzyme OGG1. American Journal of Physiology-renal Physiology. ,vol. 294, ,(2008) , 10.1152/AJPRENAL.00370.2007
R U Jänicke, D Sohn, K Schulze-Osthoff, The dark side of a tumor suppressor: anti-apoptotic p53. Cell Death & Differentiation. ,vol. 15, pp. 959- 976 ,(2008) , 10.1038/CDD.2008.33
M. H. Emptage, T. A. Kent, M. C. Kennedy, H. Beinert, E. Munck, Mössbauer and EPR studies of activated aconitase: development of a localized valence state at a subsite of the [4Fe-4S] cluster on binding of citrate Proceedings of the National Academy of Sciences of the United States of America. ,vol. 80, pp. 4674- 4678 ,(1983) , 10.1073/PNAS.80.15.4674
Lyudmila I. Rachek, Valentina I. Grishko, Susan P. LeDoux, Glenn L. Wilson, Role of nitric oxide-induced mtDNA damage in mitochondrial dysfunction and apoptosis Free Radical Biology and Medicine. ,vol. 40, pp. 754- 762 ,(2006) , 10.1016/J.FREERADBIOMED.2005.09.028
Asaad Aljandali, Haunani Pollack, Anjana Yeldandi, Yuyu LI, Sigmund A. Weitzman, David W. Kamp, Asbestos causes apoptosis in alveolar epithelial cells: Role of iron-induced free radicals Journal of Laboratory and Clinical Medicine. ,vol. 137, pp. 330- 339 ,(2001) , 10.1067/MLC.2001.114826
Martin Roepke, Antje Diestel, Khouloud Bajbouj, Diana Walluscheck, Peter Schonfeld, Albert Roessner, Regine Schneider-Stock, Hala Gali-Muhtasib, Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells Cancer Biology & Therapy. ,vol. 6, pp. 160- 169 ,(2007) , 10.4161/CBT.6.2.3575
Rodrigo Franco, Roberto Sánchez-Olea, Elsa M. Reyes-Reyes, Mihalis I. Panayiotidis, Environmental toxicity, oxidative stress and apoptosis: ménage à trois. Mutation Research-genetic Toxicology and Environmental Mutagenesis. ,vol. 674, pp. 3- 22 ,(2009) , 10.1016/J.MRGENTOX.2008.11.012
M C Jaurand, Mechanisms of fiber-induced genotoxicity. Environmental Health Perspectives. ,vol. 105, pp. 1073- 1084 ,(1997) , 10.1289/EHP.97105S51073
Nay Wei Soong, David R. Hinton, Gino Cortopassi, Norman Arnheim, Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain Nature Genetics. ,vol. 2, pp. 318- 323 ,(1992) , 10.1038/NG1292-318
K. Ishikawa, K. Takenaga, M. Akimoto, N. Koshikawa, A. Yamaguchi, H. Imanishi, K. Nakada, Y. Honma, J.-I. Hayashi, ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. ,vol. 320, pp. 661- 664 ,(2008) , 10.1126/SCIENCE.1156906