Nonstationarity of dynamic cerebral autoregulation.

作者: Ronney B. Panerai

DOI: 10.1016/J.MEDENGPHY.2013.09.004

关键词:

摘要: Abstract Dynamic cerebral autoregulation (dCA), the transient response of blood flow (CBF) to rapid changes in arterial pressure (BP), is usually quantified by parameters extracted from time- or frequency-domain analysis. Reproducibility studies dCA and consideration physiological determinants dynamic BP-CBF relationship provide strong indications that a nonstationary process. As consequence, new analytical approaches are needed estimate with greater temporal resolution thus allowing its longitudinal patterns variability be assessed health disease states. Techniques proposed for this task include ARMA models moving windows, recursive least-squares, Laguerre–Volterra networks, wavelet phase synchronisation, multimodal pressure-flow Initial results these techniques have revealed influence some key nonstationarity, such as PaCO 2 , well their ability reflect impairment different clinical conditions. One priority future work development validation multivariate time-varying minimise many co-variates which contribute nonstationarity.

参考文章(122)
Michael R. Edwards, D. C. Lin, Richard L. Hughson, Modeling the interaction between perfusion pressure and CO2 on cerebral blood flow. Advances in Experimental Medicine and Biology. ,vol. 499, pp. 285- 290 ,(2001) , 10.1007/978-1-4615-1375-9_45
Lee A. Fleisher, Steven M. Frank, Daniel I. Sessler, Christi Cheng, Takashi Matsukawa, Carole A. Vannier, Thermoregulation and Heart Rate Variability Clinical Science. ,vol. 90, pp. 97- 103 ,(1996) , 10.1042/CS0900097
Benjamin D. Levine, Rong Zhang, Robert C. Roach, Dynamic cerebral autoregulation at high altitude. Advances in Experimental Medicine and Biology. ,vol. 474, pp. 319- 322 ,(1999) , 10.1007/978-1-4615-4711-2_24
Rong Zhang, Julie H. Zuckerman, Benjamin D. Levine, Deterioration of cerebral autoregulation during orthostatic stress: insights from the frequency domain Journal of Applied Physiology. ,vol. 85, pp. 1113- 1122 ,(1998) , 10.1152/JAPPL.1998.85.3.1113
David W. Busija, Donald D. Heistad, Factors involved in the physiological regulation of the cerebral circulation Reviews of Physiology Biochemistry and Pharmacology. ,vol. 101, pp. 161- 211 ,(1984) , 10.1007/BFB0027696
Ronney B. Panerai, Suzanne L. Dawson, Penelope J. Eames, John F. Potter, Cerebral blood flow velocity response to induced and spontaneous sudden changes in arterial blood pressure. American Journal of Physiology-heart and Circulatory Physiology. ,vol. 280, ,(2001) , 10.1152/AJPHEART.2001.280.5.H2162
Michael D. Nelson, Mark J. Haykowsky, Michael K. Stickland, Luis A. Altamirano-Diaz, Christopher K. Willie, Kurt J. Smith, Stewart R. Petersen, Philip N. Ainslie, Reductions in cerebral blood flow during passive heat stress in humans: partitioning the mechanisms. The Journal of Physiology. ,vol. 589, pp. 4053- 4064 ,(2011) , 10.1113/JPHYSIOL.2011.212118
Han-Hwa Hu, Terry Bo-Jau Kuo, Wen-Jang Wong, Yun-On Luk, Chang-Ming Chern, Li-Chi Hsu, Wen-Yung Sheng, None, Transfer function analysis of cerebral hemodynamics in patients with carotid stenosis. Journal of Cerebral Blood Flow and Metabolism. ,vol. 19, pp. 460- 465 ,(1999) , 10.1097/00004647-199904000-00012
Thorsten Jürgen Doering, Rune Aaslid, Birgit Steuernagel, Jürgen Brix, Christina Niederstadt, Alf Breull, Berthold Schneider, Gisela C. Fischer, Cerebral autoregulation during whole-body hypothermia and hyperthermia stimulus. American Journal of Physical Medicine & Rehabilitation. ,vol. 78, pp. 33- 38 ,(1999) , 10.1097/00002060-199901000-00009