MSSP for 2-D sets with unknown parameters and a cryptographic application

作者: Nadav Voloch

DOI: 10.12988/CES.2017.79101

关键词:

摘要:

参考文章(13)
Stephan Eidenbenz, Konrad Schlude, Aris T. Pagourtzis, Mark Cieliebak, On the complexity of variations of equal sum subsets Nordic Journal of Computing. ,vol. 14, pp. 151- 172 ,(2008) , 10.5555/1737763.1737764
Hans Kellerer, Ulrich Pferschy, Maria Grazia Speranza, An Efficient Approximation Scheme for the Subset-Sum Problem international symposium on algorithms and computation. pp. 394- 403 ,(1997) , 10.1007/3-540-63890-3_42
Alberto Caprara, Hans Kellerer, Ulrich Pferschy, The Multiple Subset Sum Problem Siam Journal on Optimization. ,vol. 11, pp. 308- 319 ,(2000) , 10.1137/S1052623498348481
A polynomial-time algorithm for breaking the basic Merkle - Hellman cryptosystem IEEE Transactions on Information Theory. ,vol. 30, pp. 699- 704 ,(1984) , 10.1109/TIT.1984.1056964
David S. Johnson, Approximation algorithms for combinatorial problems Journal of Computer and System Sciences. ,vol. 9, pp. 256- 278 ,(1974) , 10.1016/S0022-0000(74)80044-9
Ellis Horowitz, Sartaj Sahni, Computing Partitions with Applications to the Knapsack Problem Journal of the ACM. ,vol. 21, pp. 277- 292 ,(1974) , 10.1145/321812.321823
Cristina Bazgan, Miklos Santha, Zsolt Tuza, Efficient Approximation Algorithms for the Subset-Sums Equality Problem Journal of Computer and System Sciences. ,vol. 64, pp. 160- 170 ,(2002) , 10.1006/JCSS.2001.1784
David Pisinger, Linear Time Algorithms for Knapsack Problems with Bounded Weights Journal of Algorithms. ,vol. 33, pp. 1- 14 ,(1999) , 10.1006/JAGM.1999.1034
R. Merkle, M. Hellman, Hiding information and signatures in trapdoor knapsacks IEEE Transactions on Information Theory. ,vol. 24, pp. 525- 530 ,(1978) , 10.1109/TIT.1978.1055927