Regularity for double phase problems under additional integrability assumptions

作者: Jihoon Ok

DOI: 10.1016/J.NA.2018.12.019

关键词:

摘要: Abstract We study the regularity of quasi-minimizers or minimizers functionals double phase type. In recent years, Baroni, Colombo and Mingione have investigated theory for bounded in Baroni et al. (2015, 2018); (2015) . this paper, we assume only belong to L γ -space.

参考文章(23)
Enrico Giusti, Direct methods in the calculus of variations World Scientific. ,(2003) , 10.1142/5002
Neil S Trudinger, David G Gilbarg, Elliptic Partial Differential Equations of Second Order ,(2018)
S. M. Kozlov, Vasiliĭ Vasilʹevich Zhikov, O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals ,(1994)
Paolo Baroni, Maria Colombo, Giuseppe Mingione, Harnack inequalities for double phase functionals Nonlinear Analysis-theory Methods & Applications. ,vol. 121, pp. 206- 222 ,(2015) , 10.1016/J.NA.2014.11.001
Paolo Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions Archive for Rational Mechanics and Analysis. ,vol. 105, pp. 267- 284 ,(1989) , 10.1007/BF00251503
P. Marcellini, Regularity for Elliptic Equations with General Growth Conditions Journal of Differential Equations. ,vol. 105, pp. 296- 333 ,(1993) , 10.1006/JDEQ.1993.1091
Tuomo Kuusi, Giuseppe Mingione, Guide to Nonlinear Potential Estimates Bulletin of Mathematical Sciences. ,vol. 4, pp. 1- 82 ,(2014) , 10.1007/S13373-013-0048-9
Maria Colombo, Giuseppe Mingione, Regularity for Double Phase Variational Problems Archive for Rational Mechanics and Analysis. ,vol. 215, pp. 443- 496 ,(2015) , 10.1007/S00205-014-0785-2
V V Zhikov, AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORY Mathematics of The Ussr-izvestiya. ,vol. 29, pp. 33- 66 ,(1987) , 10.1070/IM1987V029N01ABEH000958
Maria Colombo, Giuseppe Mingione, Bounded Minimisers of Double Phase Variational Integrals Archive for Rational Mechanics and Analysis. ,vol. 218, pp. 219- 273 ,(2015) , 10.1007/S00205-015-0859-9