Local-time representation of path integrals.

作者: Petr Jizba , Václav Zatloukal

DOI: 10.1103/PHYSREVE.92.062137

关键词:

摘要: We derive a local-time path-integral representation for generic one-dimensional time-independent system. In particular, we show how to rephrase the matrix elements of Bloch density as path integral over x-dependent profiles. The latter quantify time that sample paths x(t) in Feynman spend vicinity an arbitrary point x. Generalization includes functionals local is also provided. argue results obtained represent powerful alternative traditional Feynman-Kac formula, particularly high- and low-temperature regimes. To illustrate this point, apply our analyze asymptotic behavior at low temperatures. Further salient issues, such connections with Sturm-Liouville theory Rayleigh-Ritz variational principle, are discussed.

参考文章(54)
Soviet Union. Narodnyĭ komissariat ti︠a︡zheloĭ promyshlennosti, Soviet Union. Vysshiĭ sovet narodnogo khozi︠a︡ĭstva, Physikalische Zeitschrift der Sowjetunion [s.n.]. ,(1932)
Albert Messiah, Quantum mechanics : two volumes bound as one Dover. ,(2014)
Paul Lévy, Sur certains processus stochastiques homogènes Compositio Mathematica. ,vol. 7, pp. 283- 339 ,(1940)
Daniel Ray, Sojourn times of diffusion processes Illinois Journal of Mathematics. ,vol. 7, pp. 615- 630 ,(1963) , 10.1215/IJM/1255645099
Marc Yor, Daniel Revuz, Continuous martingales and Brownian motion ,(1990)
Norman Bleistein, Richard A. Handelsman, Asymptotic Expansions of Integrals ,(1975)
Albert Roach Hibbs, Richard Phillips Feynman, Quantum Mechanics and Path Integrals ,(1965)
Michael B. Marcus, Jay Rosen, Markov Processes, Gaussian Processes, and Local Times Cambridge University Press. ,(2006) , 10.1017/CBO9780511617997
Anton Zettl, Sturm-Liouville theory ,(2005)
Jean Zinn-Justin, Path integrals in quantum mechanics ,(2005)