Improving Motor Imagery Classification With a New BCI Design Using Neuro-Fuzzy S-dFasArt

作者: J.-M Cano-Izquierdo , J. Ibarrola , M. Almonacid

DOI: 10.1109/TNSRE.2011.2169991

关键词:

摘要: This paper presents an algorithm based on neural networks and fuzzy theory (S-dFasArt) to classify spontaneous mental activities from electroencephalogram (EEG) signals, in order operate a noninvasive brain-computer interface. The focus is placed the three-class problem, left-hand movement imagination, right imagination word generation. allows supervised classification of temporal patterns improving rates BCI Competition III (Data Set V: multiclass continuous EEG). Using precomputed data supplied for competition following rules established there, new method S-dFasArt, along with rule prune voting strategy proposed. results have been compared other published methods their success rates.

参考文章(11)
José Manuel Cano Izquierdo, Yannis A. Dimitriadis, Eduardo Gómez Sánchez, Juan López Coronado, Learning from noisy information in FasArt and FasBack neuro-fuzzy systems Neural Networks. ,vol. 14, pp. 407- 425 ,(2001) , 10.1016/S0893-6080(01)00031-4
Ricardo Aler, Ines M. Galvan, Jose M. Valls, Evolving spatial and frequency selection filters for Brain-Computer Interfaces IEEE Congress on Evolutionary Computation. pp. 1- 7 ,(2010) , 10.1109/CEC.2010.5586383
Ferran Galán, Francesc Oliva, Joan Guàrdia, Using mental tasks transitions detection to improve spontaneous mental activity classification. Medical & Biological Engineering & Computing. ,vol. 45, pp. 603- 609 ,(2007) , 10.1007/S11517-007-0197-7
B. Blankertz, K.R. Muller, D.J. Krusienski, G. Schalk, J.R. Wolpaw, A. Schlogl, G. Pfurtscheller, J.D.R. Millan, M. Schroder, N. Birbaumer, The BCI competition III: validating alternative approaches to actual BCI problems international conference of the ieee engineering in medicine and biology society. ,vol. 14, pp. 153- 159 ,(2006) , 10.1109/TNSRE.2006.875642
Rafael Toledo-Moreo, Miguel Pinzolas-Prado, Jose Manuel Cano-Izquierdo, Maneuver Prediction for Road Vehicles Based on a Neuro-Fuzzy Architecture With a Low-Cost Navigation Unit IEEE Transactions on Intelligent Transportation Systems. ,vol. 11, pp. 498- 504 ,(2010) , 10.1109/TITS.2009.2039011
Ali Bashashati, Mehrdad Fatourechi, Rabab K Ward, Gary E Birch, A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. Journal of Neural Engineering. ,vol. 4, ,(2007) , 10.1088/1741-2560/4/2/R03
G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, D.B. Rosen, Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps IEEE Transactions on Neural Networks. ,vol. 3, pp. 698- 713 ,(1992) , 10.1109/72.159059
J. Cano-Izquierdo, M. Almonacid, J.J. Ibarrola, Brief paper: Applying neuro-fuzzy model dFasArt in control systems Engineering Applications of Artificial Intelligence. ,vol. 23, pp. 1053- 1063 ,(2010) , 10.1016/J.ENGAPPAI.2010.06.010
Ricardo Aler, Inés M. Galván, José M. Valls, Transition Detection for Brain Computer Interface Classification biomedical engineering systems and technologies. ,vol. 52, pp. 200- 210 ,(2009) , 10.1007/978-3-642-11721-3_15