Separation and approximation of polyhedral objects

作者: Joseph S. B. Mitchell , Subhash Suri

DOI:

关键词:

摘要: Given a family of disjoint polygons P1, P2,…, Pk in the plane, and an integer parameter m, it is NP-complete to decide if Pi's can be separated by polygonal consisting m edges, that is, there exist R1, R2,…, Rk with pairwise-disjoint boundaries such Pi *** Ri S|Ri| ≤ m. In three dimensions, problem separating even two nested convex polyhedra k-facet polyhedron NP-complete. Many other extensions generalizations polyhedral separation problem, either families or higher are also intractable. this paper, we present efficient approximation algorithms for constructing near-optimal size. Our main results as follows. give O(n log n) time algorithm whose size within constant factor optimal family; n number edges input polygons. separate from nonconvex surface facet-complexity O(log n, times optimal, where = |P|+|Q| complexity polyhedra. runs O(n4) time, but improves O (n3) convex. extends dimensions. d ≥ 4, O(d O(nd+1)time. Finally, obtain on sets points, polyhedra, non-polyhedral surfaces, spherical patches.

参考文章(22)
Gautam Das, Deborah A. Joseph, Approximation schemes in computational geometry The University of Wisconsin - Madison. ,(1990)
Gautam Das, Deborah Joseph, Minimum vertex hulls for polyhedral domains Theoretical Computer Science. ,vol. 103, pp. 107- 135 ,(1992) , 10.1016/0304-3975(92)90088-W
David P. Dobkin, David G. Kirkpatrick, Determining the Separation of Preprocessed Polyhedra - A Unified Approach international colloquium on automata languages and programming. pp. 400- 413 ,(1990) , 10.1007/BFB0032047
Alexander Schrijver, Theory of Linear and Integer Programming ,(1986)
C. Carathéodory, Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen Rendiconti del Circolo Matematico di Palermo. ,vol. 32, pp. 193- 217 ,(1911) , 10.1007/BF03014795
Nimrod Megiddo, Linear Programming in Linear Time When the Dimension Is Fixed Journal of the ACM. ,vol. 31, pp. 114- 127 ,(1984) , 10.1145/2422.322418
Herbert Edelsbrunner, Arch D. Robison, Xiao-Jun Shen, Covering convex sets with non-overlapping polygons Discrete Mathematics. ,vol. 81, pp. 153- 164 ,(1990) , 10.1016/0012-365X(90)90147-A
C Wang, E P F Chan, Finding the minimum visible vertex distance between two non-intersecting simple polygons Proceedings of the second annual symposium on Computational geometry - SCG '86. pp. 34- 42 ,(1986) , 10.1145/10515.10519