Connecting the sequence-space of bacterial signaling proteins to phenotypes using coevolutionary landscapes

作者: R. R. Cheng , O. Nordesjö , R. L. Hayes , H. Levine , S. C. Flores

DOI: 10.1101/044586

关键词:

摘要: Two-component signaling (TCS) is the primary means by which bacteria sense and respond to environment. TCS involves two partner proteins working in tandem, interact perform cellular functions while limiting interactions with non-partners (i.e., ″cross-talk"). We construct a Potts model for that can quantitatively predict how mutating amino acid identities affect interaction between partners non-partners. The parameters of this are inferred directly from protein sequence data. This approach drastically reduces computational complexity exploring sequence-space proteins. As stringent test, we compare its predictions recent comprehensive mutational study, characterized functionality 204 variants PhoQ kinase Escherichia coli. find our best accurately reproduce combinations found experiment, enable functional PhoP. These demonstrate evolutionary pressure preserve as well prevent unwanted ″cross-talk". Further, calculate change binding affinity PhoP, providing an estimate amount destabilization needed disrupt TCS.

参考文章(81)
Ricardo N. dos Santos, Faruck Morcos, Biman Jana, Adriano D. Andricopulo, José N. Onuchic, Dimeric interactions and complex formation using direct coevolutionary couplings Scientific Reports. ,vol. 5, pp. 13652- 13652 ,(2015) , 10.1038/SREP13652
SAMUEL C. FLORES, YAQI WAN, RICK RUSSELL, RUSS B. ALTMAN, Predicting RNA structure by multiple template homology modeling pacific symposium on biocomputing. pp. 216- 227 ,(2010) , 10.1142/9789814295291_0024
A. Contini, G. Tiana, A many-body term improves the accuracy of effective potentials based on protein coevolutionary data Journal of Chemical Physics. ,vol. 143, pp. 025103- ,(2015) , 10.1063/1.4926665
Duccio Malinverni, Simone Marsili, Alessandro Barducci, Paolo De Los Rios, Large-Scale Conformational Transitions and Dimerization Are Encoded in the Amino-Acid Sequences of Hsp70 Chaperones PLOS Computational Biology. ,vol. 11, pp. e1004262- ,(2015) , 10.1371/JOURNAL.PCBI.1004262
Rocío Espada, R Gonzalo Parra, Thierry Mora, Aleksandra M Walczak, Diego U Ferreiro, Capturing coevolutionary signals inrepeat proteins BMC Bioinformatics. ,vol. 16, pp. 207- 207 ,(2015) , 10.1186/S12859-015-0648-3
Jonathan Hansen, Yaakov Benenson, Synthetic biology of cell signaling Natural Computing. ,vol. 15, pp. 5- 13 ,(2016) , 10.1007/S11047-015-9526-1
Matteo Figliuzzi, Hervé Jacquier, Alexander Schug, Oliver Tenaillon, Martin Weigt, Coevolutionary Landscape Inference and the Context-Dependence of Mutations in Beta-Lactamase TEM-1 Molecular Biology and Evolution. ,vol. 33, pp. 268- 280 ,(2016) , 10.1093/MOLBEV/MSV211
Fabienne C Fiesel, Thomas R Caulfield, Elisabeth L Moussaud‐Lamodière, Kotaro Ogaki, Daniel FAR Dourado, Samuel C Flores, Owen A Ross, Wolfdieter Springer, None, Structural and Functional Impact of Parkinson Disease‐Associated Mutations in the E3 Ubiquitin Ligase Parkin Human Mutation. ,vol. 36, pp. 774- 786 ,(2015) , 10.1002/HUMU.22808
Ludovico Sutto, Simone Marsili, Alfonso Valencia, Francesco Luigi Gervasio, From residue coevolution to protein conformational ensembles and functional dynamics Proceedings of the National Academy of Sciences of the United States of America. ,vol. 112, pp. 13567- 13572 ,(2015) , 10.1073/PNAS.1508584112
Ryan R. Cheng, Mohit Raghunathan, Jeffrey K. Noel, José N. Onuchic, Constructing sequence‐dependent protein models using coevolutionary information Protein Science. ,vol. 25, pp. 111- 122 ,(2016) , 10.1002/PRO.2758