Lan of Thinned Empirical Processes with an Application to Fuzzy Set Density Estimation

作者: Michael Falk , Friedrich Liese

DOI: 10.1023/A:1009981817526

关键词:

摘要: We establish local asymptotic normality of thinned empirical point processes, based on n i.i.d. random elements, if the probability \({\alpha }_{n}\) thinning satisfies }_n \to _{n \infty } 0,n{\alpha \infty\). It turns out that central sequence is determined by limit coefficient variation tangent function. The depends only total number \({\tau }\left( \right)\) nonthinned observations and this 1 or −1. In case under suitable regularity conditions, an asymptotically efficient estimator underlying parameter can be only. An application to density estimation leads a fuzzy set estimator, which in parametric model. nonparametric setup, it also outperform usual kernel depending values its second derivative.

参考文章(26)
H.-J. Zimmermann, Fuzzy set theory—and its applications (3rd ed.) Kluwer Academic Publishers. ,(1996)
L. Le Cam, On the Asymptotic Theory of Estimation and Testing Hypotheses Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. ,(1956)
R. Z. Khasʹminskiĭ, I. A. Ibragimov, Statistical estimation : asymptotic theory Springer-Verlag. ,(1981)
Jaroslav H�jek, A Characterization of Limiting Distributions of Regular Estimates Probability Theory and Related Fields. ,vol. 14, pp. 323- 330 ,(1970) , 10.1007/BF00533669
Rolf-Dieter Reiss, A Course on Point Processes ,(1992)
Helmut Strasser, Walter de Gruyter, James V. Bondar, Mathematical theory of statistics ,(1985)
Johann Pfanzagl, Parametric statistical theory ,(1994)