Reduction of chemical reaction networks using quasi-integrals.

作者: Ronny Straube , Dietrich Flockerzi , Stefan C. Müller , Marcus J. B. Hauser

DOI: 10.1021/JP045665S

关键词:

摘要: We present a numerical method to identify possible candidates for quasi-stationary manifolds in complex reaction networks governed by systems of ordinary differential equations. Inspired singular perturbation theory, we examine the ratios certain components rate vector. Those that rapidly approach nearly constant value define slow manifold original flow terms quasi-integrals, is, functions are along trajectories. The dimensionality system is thus effectively reduced without reliance on priori knowledge different time scales system. also demonstrate relation our theory which, its simplest form, just well-known quasi-steady-state approximation. In two case studies, apply oscillatory chemical systems: 6-dimensional hemin-hydrogen peroxide-sulfite pH oscillator and 10-dimensional mechanistic model peroxidase-oxidase (PO) conjecture presented especially suited straightforward reduction higher dimensional dynamical where analytical methods fail associated with invariant

参考文章(29)
Tam�s Tur�nyi, Sensitivity analysis of complex kinetic systems. Tools and applications Journal of Mathematical Chemistry. ,vol. 5, pp. 203- 248 ,(1990) , 10.1007/BF01166355
Harald Geiger, Ian Barnes, Karl H Becker, Birger Bohn, Theo Brauers, Birgit Donner, Hans-Peter Dorn, Manfred Elend, Carlos M Freitas Dinis, Dirk Grossmann, Heinz Hass, Holger Hein, Axel Hoffmann, Lars Hoppe, Frank Hülsemann, Dieter Kley, Björn Klotz, Hans G Libuda, Tobias Maurer, Djuro Mihelcic, Geert K Moortgat, Romeo Olariu, Peter Neeb, Dirk Poppe, Lars Ruppert, Claudia G Sauer, Oleg Shestakov, Holger Somnitz, William R Stockwell, Lars P Thüner, Andreas Wahner, Peter Wiesen, Friedhelm Zabel, Reinhard Zellner, Cornelius Zetzsch, None, Chemical Mechanism Development: Laboratory Studies and Model Applications Journal of Atmospheric Chemistry. ,vol. 42, pp. 323- 357 ,(2002) , 10.1023/A:1015708517705
Yuri A. Kuznetsov, Elements of applied bifurcation theory ,(1995)
Marc R. Roussel, Simon J. Fraser, Invariant manifold methods for metabolic model reduction. Chaos. ,vol. 11, pp. 196- 206 ,(2001) , 10.1063/1.1349891
Matthias Stiefenhofer, Quasi-steady-state approximation for chemical reaction networks Journal of Mathematical Biology. ,vol. 36, pp. 593- 609 ,(1998) , 10.1007/S002850050116
Marcus J. B. Hauser, Anika Strich, Rebeka Bakos, Zsuzsanna Nagy-Ungvarai, Stefan C. Müller, pH oscillations in the hemin–hydrogen peroxide–sulfite reaction Faraday Discussions. ,vol. 120, pp. 229- 236 ,(2002) , 10.1039/B105707N
Neil Fenichel, Geometric singular perturbation theory for ordinary differential equations Journal of Differential Equations. ,vol. 31, pp. 53- 98 ,(1979) , 10.1016/0022-0396(79)90152-9