Closed 1-forms in topology and dynamics

作者: Michael Farber , D Schutz

DOI: 10.1070/RM2008V063N06ABEH004579

关键词:

摘要: This article surveys recent progress of results in topology and dynamics based on techniques closed one-forms. Our approach allows us to draw conclusions about properties flows by studying homotopical cohomological features manifolds. More specifically we describe a Lusternik - Schnirelmann type theory for one-forms, the focusing effect Lyapunov We also discuss treatment invariants cat(X, \xi) cat^1(X, their explicit computation certain examples.

参考文章(41)
Andrei V. Pajitnov, Circle-Valued Morse Theory ,(2006)
A. V. Pazhitnov, Morse theory of closed 1-forms Springer Berlin Heidelberg. pp. 98- 110 ,(1991) , 10.1007/BFB0084740
Charles Conley, Isolated Invariant Sets and the Morse Index American Mathematical Society. ,vol. 38, ,(1978) , 10.1090/CBMS/038
D. Sch�tz, On the Lusternik-Schnirelman theory of a real cohomology class Manuscripta Mathematica. ,vol. 113, pp. 85- 106 ,(2004) , 10.1007/S00229-003-0423-Z
Andrew Ranicki, Michael Farber, The Morse-Novikov theory of circle-valued functions and noncommutative localization arXiv: Differential Geometry. ,(1998)
Michael Farber, Counting zeros of closed 1-forms arXiv: Differential Geometry. ,(1999)
Michael Farber, Zeros of closed 1-forms, homoclinic orbits and Lusternik-Schnirelman theory Topological Methods in Nonlinear Analysis. ,vol. 19, pp. 123- 152 ,(2002) , 10.12775/TMNA.2002.008
T. Kappeler, Eduard Zehnder, M. Farber, J. Latschev, Smooth Lyapunov 1-forms Enseignement mathematique. pp. 3- 18 ,(2003) , 10.3929/ETHZ-A-004520590