Droplet-interface-bilayer assays in microfluidic passive networks.

作者: Bárbara Schlicht , Michele Zagnoni

DOI: 10.1038/SREP09951

关键词:

摘要: Basic biophysical studies and pharmacological processes can be investigated by mimicking the intracellular extracellular environments across an artificial cell membrane construct. The ability to reproduce in vitro simplified scenarios found live membranes automated manner has great potential for a variety of synthetic biology compound screening applications. Here, we present fully integrated microfluidic system production lipid bilayers based on miniaturisation droplet-interface-bilayer (DIB) techniques. platform uses design that enables controlled positioning storage phospholipid-stabilized water-in-oil droplets, leading successfully scalable formation arrays DIBs mimic processes. To ensure robustness operation, have how concentration, immiscible phase flow velocities device geometrical parameters affect performance. Finally, produced proof-of-concept data showing diffusive transport molecules ions on-chip studied quantified using fluorescence-based assays.

参考文章(45)
John N. Weinstein, Robert Blumenthal, Richard D. Klausner, [38] Carboxyfluorescein Leakage Assay for Lipoprotein-Liposome Interaction Methods in Enzymology. ,vol. 128, pp. 657- 668 ,(1986) , 10.1016/0076-6879(86)28098-2
Sadao Ota, Hiroaki Suzuki, Shoji Takeuchi, Microfluidic lipid membrane formation on microchamber arrays Lab on a Chip. ,vol. 11, pp. 2485- 2487 ,(2011) , 10.1039/C1LC20334G
Linda C. M. Gross, Andrew J. Heron, Sylvan C. Baca, Mark I. Wallace, Determining Membrane Capacitance by Dynamic Control of Droplet Interface Bilayer Area Langmuir. ,vol. 27, pp. 14335- 14342 ,(2011) , 10.1021/LA203081V
T. Robinson, P. Kuhn, K. Eyer, P. S. Dittrich, Microfluidic trapping of giant unilamellar vesicles to study transport through a membrane pore Biomicrofluidics. ,vol. 7, pp. 044105- ,(2013) , 10.1063/1.4816712
Su Li, Peichi Hu, Noah Malmstadt, Confocal imaging to quantify passive transport across biomimetic lipid membranes. Analytical Chemistry. ,vol. 82, pp. 7766- 7771 ,(2010) , 10.1021/AC1016826
Mark S. Friddin, Hywel Morgan, Maurits R. R. de Planque, Cell-free protein expression systems in microdroplets: Stabilization of interdroplet bilayers. Biomicrofluidics. ,vol. 7, pp. 014108- ,(2013) , 10.1063/1.4791651
Gabriel Villar, Alexander D. Graham, Hagan Bayley, A Tissue-Like Printed Material Science. ,vol. 340, pp. 48- 52 ,(2013) , 10.1126/SCIENCE.1229495
Michele Zagnoni, Charles N. Baroud, Jonathan M. Cooper, Electrically initiated upstream coalescence cascade of droplets in a microfluidic flow. Physical Review E. ,vol. 80, pp. 046303- 046303 ,(2009) , 10.1103/PHYSREVE.80.046303
Takasi Nisisako, Shiva A. Portonovo, Jacob J. Schmidt, Microfluidic passive permeability assay using nanoliter droplet interface lipid bilayers. Analyst. ,vol. 138, pp. 6793- 6800 ,(2013) , 10.1039/C3AN01314F
Akihiko Ishida, Chieko Otsuka, Hirofumi Tani, Tamio Kamidate, Fluorescein chemiluminescence method for estimation of membrane permeability of liposomes. Analytical Biochemistry. ,vol. 342, pp. 338- 340 ,(2005) , 10.1016/J.AB.2005.03.042