Boson, Symplectic and Other Replicas for Simple Hamiltonians

作者: A. P. Zuker , M. Dufour , C. Pomar

DOI: 10.1007/978-1-4613-0971-0_4

关键词:

摘要: We present a linearization method for some simple (naturally tridiagonal) Hamiltonians. For the ground states it is equivalent to lowest approximation in coupled cluster formalism and its extension excited straightforward. Then we construct sets of Hamiltonians (boson or symplectic replicas) that produce same secular problem. In general they are not manifestly Hermitian. show how deal with this problem extract mean fields describe both normal symmetry breaking regimes at time incorporate variationally terms usually thought as correlations.

参考文章(6)
Abraham Klein, Ching Teh Li, Wentzel-Kramers-Brillouin Quantization of Pseudospin Hamiltonians Physical Review Letters. ,vol. 46, pp. 895- 898 ,(1981) , 10.1103/PHYSREVLETT.46.895
H.J. Lipkin, N. Meshkov, A.J. Glick, Validity of many-body approximation methods for a solvable model Nuclear Physics. ,vol. 62, pp. 188- 198 ,(1965) , 10.1016/0029-5582(65)90862-X
P. Ring, P. Schuck, M. R. Strayer, The Nuclear Many-body Problem ,(1980)
H. Kümmel, K.H. Lührmann, J.G. Zabolitzky, Many-fermion theory in expS- (or coupled cluster) form Physics Reports. ,vol. 36, pp. 1- 63 ,(1978) , 10.1016/0370-1573(78)90081-9
K.H Lührmann, Equations for subsystems Annals of Physics. ,vol. 103, pp. 253- 288 ,(1977) , 10.1016/S0003-4916(97)90001-4
Peter Ring, Peter Schuck, The Nuclear Many-Body Problem Springer Berlin Heidelberg. ,(1980) , 10.1007/978-3-642-61852-9