Wavelet-based classification and influence matrix analysis method for the fast discrimination of Chinese herbal medicines according to the geographical origins with near infrared spectroscopy

作者: Wenlong Li , Haibin Qu

DOI: 10.1142/S1793545813500612

关键词:

摘要: A discriminant analysis technique using wavelet transformation (WT) and influence matrix (CAIMAN) method is proposed for the near infrared (NIR) spectroscopy classification. In methodology, NIR spectra are decomposed by WT data compression a forward feature selection further employed to extract relevant information from coefficients, reducing both classification errors model complexity. discriminant-CAIMAN (D-CAIMAN) utilized build in domain on basis of reduced coefficients spectral variables. set 265 salviae miltiorrhizae radix samples 9 different geographical origins used as an example test performance algorithm. For comparison, k-nearest neighbor (KNN), linear (LDA) quadratic (QDA) methods also employed. D-CAIMAN with wavelet-based (WD-CAIMAN) shows best performance, achieving total rate 100% cross-validation prediction set. It worth noting that WD-CAIMAN classifier improved sensitivity, selectivity interpretability classifications.

参考文章(27)
R. Todeschini, D. Ballabio, V. Consonni, A. Mauri, M. Pavan, CAIMAN (Classification and Influence Matrix Analysis) : A new approach to the classification based on leverage-scaled functions Chemometrics and Intelligent Laboratory Systems. ,vol. 87, pp. 3- 17 ,(2007) , 10.1016/J.CHEMOLAB.2005.11.001
Xueguang Shao, Fang Wang, Da Chen, Qingde Su, A method for near-infrared spectral calibration of complex plant samples with wavelet transform and elimination of uninformative variables. Analytical and Bioanalytical Chemistry. ,vol. 378, pp. 1382- 1387 ,(2004) , 10.1007/S00216-003-2397-9
Yong Jiang, Bruno David, Pengfei Tu, Yves Barbin, Recent analytical approaches in quality control of traditional Chinese medicines—A review Analytica Chimica Acta. ,vol. 657, pp. 9- 18 ,(2010) , 10.1016/J.ACA.2009.10.024
Márcio José Coelho Pontes, Juliana Cortez, Roberto Kawakami Harrop Galvão, Celio Pasquini, Mário César Ugulino Araújo, Ricardo Marques Coelho, Márcio Koiti Chiba, Mônica Ferreira de Abreu, Beáta Emöke Madari, None, Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain. Analytica Chimica Acta. ,vol. 642, pp. 12- 18 ,(2009) , 10.1016/J.ACA.2009.03.001
David C. Hoaglin, Roy E. Welsch, The Hat Matrix in Regression and ANOVA The American Statistician. ,vol. 32, pp. 17- 22 ,(1978) , 10.1080/00031305.1978.10479237
M. Forina, M. Casale, P. Oliveri, S. Lanteri, CAIMAN brothers: A family of powerful classification and class modeling techniques Chemometrics and Intelligent Laboratory Systems. ,vol. 96, pp. 239- 245 ,(2009) , 10.1016/J.CHEMOLAB.2009.02.006
Michele Forina, Paolo Oliveri, Henry Jäger, Ute Römisch, Johanna Smeyers-Verbeke, Class modeling techniques in the control of the geographical origin of wines Chemometrics and Intelligent Laboratory Systems. ,vol. 99, pp. 127- 137 ,(2009) , 10.1016/J.CHEMOLAB.2009.08.002
Marina Vannucci, Naijun Sha, Philip J. Brown, NIR and mass spectra classification: Bayesian methods for wavelet-based feature selection Chemometrics and Intelligent Laboratory Systems. ,vol. 77, pp. 139- 148 ,(2005) , 10.1016/J.CHEMOLAB.2004.10.009