作者: Helmut Tributsch
关键词:
摘要: n-type MoSe2 layer crystals were successfully used as photoelectrodes in electrochemical solar cells. Their mechanism is based on d phototransitions the electrode combination with anodic electron transfer from suitable redox couples adjoining electrolyte (Fe2+/3+, I−/I2). Redox agents potentials more negative than that of water can be oxidized by holes low lying Mo 4d energy band clearly before onset photoreaction molecules which would lead to formation selenic acid and a gradual photodissolution electrode. In this way it possible operate regenerative cells by-passing corrosive reactions. With MoSe2: I−/I2 photocurrent densities 22 mA/cm2, photovoltages 0.55 V conversion efficiencies between 4 5% obtained red near infrared spectral region. stability behaviour was tested at 11 12 mA/cm2 over period 1200 hours (50 days). No deterioration photoelement observed. Capacity measurements indicate reducing such iodide ions are chemisorbed surface states formed trapped d-orbitals. The resulting charge redistribution causes relative shift levels suppresses reaction induces space polarization facilitates photoactivated transport iodide. n-leitende MoSe-Schichtkristalle wurden erfolgreich als Photoelektroden elektrochemischen Solarzellen verwendet. Ihr Mechanismus beruht auf d-Photoubergangen der Elektrode Kombination mit anodischer Elektronenubertragung von geeigneten Redox-Systemen (Fe2+ 3+, I−/I2) im angrenzenden Elektrolyten. Redoxverbindungen Potentialen, die negativer das des Wassers liegen, konnen durch Locher aus dem niedrigliegenden d-Energieband oxidiert werden, bevor anodische Photoreaktion Wasser einsetzt, welche zur Bildung seleniger Saure und zu einer allmahlichen Auflosung fuhren wurde. Es ist dadurch moglich, elektrochemische so betreiben, man korrosive Reaktionen vermeidet. Mit I−/I2-Zellen Photostromdichten Photopotentiale 0,55 Volt roten nahen infraroten Spektralbereich Energieumwandlungsausbeuten zwischen erreicht. Stabilitatsverhalten wurde bei uber eine Periode mehr Stunden Tage) getestet. war kein Qualitatsabfall Photoelements beobachten. Kapazitatsmessungen weisen darauf hin, reduzierende Substanzen wie Jodid-Ionen an Oberflachenzustanden chemisorbieren, eingefangene d-Orbitalen hervorgerufen werden. Die resultierende Umverteilung Oberflachenladung verursacht Verschiebung Energieniveaus, Reaktion unterdruckt induziert Raumladungspolarisation, einen photoaktivierten Elektrontransfer Iodid begunstigt.