Missing Data Imputation Toolbox for MATLAB

作者: Abel Folch-Fortuny , Francisco Arteaga , Alberto Ferrer

DOI: 10.1016/J.CHEMOLAB.2016.03.019

关键词:

摘要: Abstract Here we introduce a graphical user-friendly interface to deal with missing values called Missing Data Imputation (MDI) Toolbox. This MATLAB toolbox allows imputing values, following completely at random patterns, exploiting the relationships among variables. In this way, principal component analysis (PCA) models are fitted iteratively impute data until convergence. Different methods, using PCA internally, included in toolbox: trimmed scores regression (TSR), known (KDR), KDR (KDR-PCR), partial least squares (KDR-PLS), projection model plane (PMP), iterative algorithm (IA), modified nonlinear (NIPALS) and augmentation (DA). MDI Toolbox presents general procedure data, thus can be used infer estimate covariance structure of incomplete matrices, or as preprocessing step other methodologies.

参考文章(23)
J. Quevedo, V. Puig, G. Cembrano, J. Aguilar, C. Isaza, D. Saporta, G. Benito, M. Hedo, A. Molina, Estimating missing and false data in flow meters of a water distribution network IFAC Proceedings Volumes. ,vol. 39, pp. 1181- 1186 ,(2006) , 10.3182/20060829-4-CN-2909.00197
José M. González-Martínez, Onno E. de Noord, Alberto Ferrer, Multisynchro: a novel approach for batch synchronization in scenarios of multiple asynchronisms Journal of Chemometrics. ,vol. 28, pp. 462- 475 ,(2014) , 10.1002/CEM.2620
Scott A. Hutzler, Gary B. Bessee, Remote Near-Infrared Fuel Monitoring System Defense Technical Information Center. ,(1997) , 10.21236/ADA363918
José Camacho, Alberto Ferrer, Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: theoretical aspects Journal of Chemometrics. ,vol. 26, pp. 361- 373 ,(2012) , 10.1002/CEM.2440
Roberto Magán-Carrión, Fernando Pulido-Pulido, José Camacho, Pedro García-Teodoro, Tampered Data Recovery in WSNs through Dynamic PCA and Variable Routing Strategies Journal of Communications. ,vol. 8, pp. 738- 750 ,(2013) , 10.12720/JCM.8.11.738-750
Philip RC Nelson, Paul A Taylor, John F MacGregor, None, Missing data methods in PCA and PLS: Score calculations with incomplete observations Chemometrics and Intelligent Laboratory Systems. ,vol. 35, pp. 45- 65 ,(1996) , 10.1016/S0169-7439(96)00007-X
B. Walczak, D.L. Massart, Dealing with missing data Chemometrics and Intelligent Laboratory Systems. ,vol. 58, pp. 15- 27 ,(2001) , 10.1016/S0169-7439(01)00131-9
Francisco Arteaga, Alberto Ferrer, Dealing with missing data in MSPC: several methods, different interpretations, some examples Journal of Chemometrics. ,vol. 16, pp. 408- 418 ,(2002) , 10.1002/CEM.750