Exploiting Data Analytics and Deep Learning Systems to Support Pavement Maintenance Decisions

作者: Gaetano Di Mino , Laura Inzerillo , Ronald Roberts

DOI: 10.3390/APP11062458

关键词:

摘要:

参考文章(44)
Jerome H. Friedman, Greedy function approximation: A gradient boosting machine. Annals of Statistics. ,vol. 29, pp. 1189- 1232 ,(2001) , 10.1214/AOS/1013203451
John D. Hunter, Matplotlib: A 2D Graphics Environment Computing in Science and Engineering. ,vol. 9, pp. 90- 95 ,(2007) , 10.1109/MCSE.2007.55
Aristeidis Pantelias, Gerardo W. Flintsch, James W. Bryant, Chen Chen, Asset Management Data Practices for Supporting Project Selection Decisions Public Works Management & Policy. ,vol. 13, pp. 239- 252 ,(2009) , 10.1177/1087724X08327574
Rajat Rastogi Ankit Gupta, Praveen Kumar, None, Critical review of flexible pavement performance models KSCE Journal of Civil Engineering. ,vol. 18, pp. 142- 148 ,(2014) , 10.1007/S12205-014-0255-2
Luis Esteban Amador, Sherry Magnuson, Adjacency Modeling for Coordination of Investments in Infrastructure Asset Management: Case Study of Kindersley, Saskatchewan, Canada Transportation Research Record. ,vol. 2246, pp. 8- 15 ,(2011) , 10.3141/2246-02
Alexey Natekin, Alois Knoll, Gradient boosting machines, a tutorial. Frontiers in Neurorobotics. ,vol. 7, pp. 21- 21 ,(2013) , 10.3389/FNBOT.2013.00021
Yanru Zhang, Ali Haghani, A gradient boosting method to improve travel time prediction Transportation Research Part C-emerging Technologies. ,vol. 58, pp. 308- 324 ,(2015) , 10.1016/J.TRC.2015.02.019
Sten Sundin, Corinne Braban‐Ledoux, ARTIFICIAL INTELLIGENCE--BASED DECISION SUPPORT TECHNOLOGIES IN PAVEMENT MANAGEMENT Computer-aided Civil and Infrastructure Engineering. ,vol. 16, pp. 143- 157 ,(2001) , 10.1111/0885-9507.00220
T. C. Mbara, M. Nyarirangwe, T. Mukwashi, Challenges of raising road maintenance funds in developing countries : an analysis of road tolling in Zimbabwe Journal of Transport and Supply Chain Management. ,vol. 4, pp. 151- 175 ,(2010) , 10.4102/JTSCM.V4I1.66