Markov Random Field Modelling of fMRI Data Using a Mean Field EM-algorithm

作者: Markus Svensén , Frithjof Kruggel , D. Yves von Cramon

DOI: 10.1007/3-540-48432-9_22

关键词:

摘要: This paper considers the use of EM-algorithm, combined with mean field theory, for parameter estimation in Markov random models from unlabelled data. Special attention is given to theoretical justification this procedure, based on recent results machine learning literature. With these established, an example application technique analysis single trial functional magnetic resonance (fMR) imaging data human brain. The resulting model segments fMR images into regions different 'brain response' characteristics.

参考文章(39)
Thomas Glen Dietterich, Adaptive computation and machine learning MIT Press. ,(1998)
W Snyder, A Logenthiran, P Santago, K Link, G Bilbro, S Rajala, Segmentation of Magnetic Resonance Images Using Mean Field Annealing information processing in medical imaging. ,vol. 10, pp. 218- 226 ,(1991) , 10.1016/0262-8856(92)90022-U
Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, Lawrence K Saul, None, An introduction to variational methods for graphical models Machine Learning. ,vol. 37, pp. 105- 161 ,(1999) , 10.1023/A:1007665907178
Nailong Wu, The Maximum Entropy Method ,(1997)
Zoubin Ghahramani, Michael Jordan, None, Factorial Hidden Markov Models neural information processing systems. ,vol. 29, pp. 472- 478 ,(1995) , 10.1023/A:1007425814087
H. Elliott, H. Derin, R. Cristi, D. Geman, Application of the Gibbs distribution to image segmentation international conference on acoustics, speech, and signal processing. ,vol. 9, pp. 678- 681 ,(1984) , 10.1109/ICASSP.1984.1172637
Nicholas Lange, Scott L. Zeger, Non‐linear Fourier Time Series Analysis for Human Brain Mapping by Functional Magnetic Resonance Imaging Journal of The Royal Statistical Society Series C-applied Statistics. ,vol. 46, pp. 1- 29 ,(1997) , 10.1111/1467-9876.00046