A continuous path of singular masas in the hyperfinite II1factor

作者: Allan Sinclair , Stuart White

DOI: 10.1112/JLMS/JDL019

关键词:

摘要: Using methods of R.J.Tauer we exhibit an uncountable family singular masas in the hyperfinite $\textrm{II}_1$ factor $\R$ all with Puk\'anszky invariant $\{1\}$, no pair which are conjugate by automorphism $R$. This is done introducing $\Gamma(A)$ for a masa $A$ \IIi $N$ as maximal size projection $e\in A$ $A e$ contains non-trivial centralising sequences $eN e$. The produced give rise to continuous map from interval $[0,1]$ into equiped $d_{\infty,2}$-metric. A result also given showing that $d_{\infty,2}$-upper semi-continuous. As consequence, sets $\{n\}$ closed.

参考文章(12)
Karsten Grove, Gert Kjærgård Pedersen, Diagonalizing matrices over C(X) Journal of Functional Analysis. ,vol. 59, pp. 65- 89 ,(1984) , 10.1016/0022-1236(84)90053-3
Erik Christensen, Subalgebras of a finite algebra Mathematische Annalen. ,vol. 243, pp. 17- 29 ,(1979) , 10.1007/BF01420203
A. Connes, J. Feldman, B. Weiss, An amenable equivalence relation is generated by a single transformation Ergodic Theory and Dynamical Systems. ,vol. 1, pp. 431- 450 ,(1981) , 10.1017/S014338570000136X
A. Connes, V. Jones, A ${\text{II}}_1 $ factor with two nonconjugate Cartan subalgebras Bulletin of the American Mathematical Society. ,vol. 6, pp. 211- 212 ,(1982) , 10.1090/S0273-0979-1982-14981-3
V. R. F. Jones, Sorin Popa, Some Properties of Masa’s in Factors Invariant Subspaces and Other Topics. pp. 89- 102 ,(1982) , 10.1007/978-3-0348-5445-0_8
Richard V. Kadison, Diagonalizing Matrices American Journal of Mathematics. ,vol. 106, pp. 1451- None ,(1984) , 10.2307/2374400
Sergey Neshveyev, Erling Størmer, Ergodic Theory and Maximal Abelian Subalgebras of the Hyperfinite Factor Journal of Functional Analysis. ,vol. 195, pp. 239- 261 ,(2002) , 10.1006/JFAN.2002.3967
Sorin Popa, Allan M Sinclair, Roger R Smith, Perturbations of subalgebras of type II1 factors Journal of Functional Analysis. ,vol. 213, pp. 346- 379 ,(2004) , 10.1016/J.JFA.2004.01.010
Lajos Pukánszky, On maximal albelian subrings of factors of type ${ m II}sb{1}$ Canadian Journal of Mathematics. ,vol. 12, pp. 289- 296 ,(1960) , 10.4153/CJM-1960-024-7
A.M. Sinclair, R.R. Smith, Strongly singular masas in type II1 factors Geometric and Functional Analysis. ,vol. 12, pp. 199- 216 ,(2002) , 10.1007/S00039-002-8243-Y